scholarly journals The Rad9-Hus1-Rad1 Checkpoint Clamp Regulates Interaction of TopBP1 with ATR

2007 ◽  
Vol 282 (38) ◽  
pp. 28036-28044 ◽  
Author(s):  
Joon Lee ◽  
Akiko Kumagai ◽  
William G. Dunphy

TopBP1 serves as an activator of the ATR-ATRIP complex in response to the presence of incompletely replicated or damaged DNA. This process involves binding of ATR to the ATR-activating domain of TopBP1, which is located between BRCT domains VI and VII. TopBP1 displays increased binding to ATR-ATRIP in Xenopus egg extracts containing checkpoint-inducing DNA templates. We show that an N-terminal region of TopBP1 containing BRCT repeats I-II is essential for this checkpoint-stimulated binding of TopBP1 to ATR-ATRIP. The BRCT I-II region of TopBP1 also binds specifically to the Rad9-Hus1-Rad1 (9-1-1) complex in Xenopus egg extracts. This binding occurs via the C-terminal domain of Rad9 and depends upon phosphorylation of its Ser-373 residue. Egg extracts containing either a mutant of TopBP1 lacking the BRCT I-II repeats or a mutant of Rad9 with an alanine substitution at Ser-373 are defective in checkpoint regulation. Furthermore, an isolated C-terminal fragment from Rad9 is an effective inhibitor of checkpoint signaling in egg extracts. These findings suggest that interaction of the 9-1-1 complex with the BRCT I-II region of TopBP1 is necessary for binding of ATR-ATRIP to the ATR-activating domain of TopBP1 and the ensuing activation of ATR.

2000 ◽  
Vol 11 (5) ◽  
pp. 1535-1546 ◽  
Author(s):  
Zijian Guo ◽  
William G. Dunphy

Although homologues of the yeast checkpoint kinases Cds1 and Chk1 have been identified in various systems, the respective roles of these kinases in the responses to damaged and/or unreplicated DNA in vertebrates have not been delineated precisely. Likewise, it is largely unknown how damaged DNA and unreplicated DNA trigger the pathways that contain these effector kinases. We report that XenopusCds1 (Xcds1) is phosphorylated and activated by the presence of some simple DNA molecules with double-stranded ends in cell-freeXenopus egg extracts. Xcds1 is not affected by aphidicolin, an agent that induces DNA replication blocks. In contrast,Xenopus Chk1 (Xchk1) responds to DNA replication blocks but not to the presence of double-stranded DNA ends. Immunodepletion of Xcds1 (and/or Xchk1) from egg extracts did not attenuate the cell cycle delay induced by double-stranded DNA ends. These results imply that the cell cycle delay triggered by double-stranded DNA ends either does not involve Xcds1 or uses a factor(s) that can act redundantly with Xcds1.


2007 ◽  
Vol 27 (19) ◽  
pp. 6852-6862 ◽  
Author(s):  
Aimin Peng ◽  
Andrea L. Lewellyn ◽  
James L. Maller

ABSTRACT In Xenopus laevis embryos, the midblastula transition (MBT) at the 12th cell division marks initiation of critical developmental events, including zygotic transcription and the abrupt inclusion of gap phases into the cell cycle. Interestingly, although an ionizing radiation-induced checkpoint response is absent in pre-MBT embryos, introduction of a threshold amount of undamaged plasmid or sperm DNA allows a DNA damage checkpoint response to be activated. We show here that undamaged threshold DNA directly participates in checkpoint signaling, as judged by several dynamic changes, including H2AX phosphorylation, ATM phosphorylation and loading onto chromatin, and Chk1/Chk2 phosphorylation and release from nuclear DNA. These responses on physically separate threshold DNA require γ-H2AX and are triggered by an ATM-dependent soluble signal initiated by damaged DNA. The signal persists in egg extracts even after damaged DNA is removed from the system, indicating that the absence of damaged DNA is not sufficient to end the checkpoint response. The results identify a novel mechanism by which undamaged DNA enhances checkpoint signaling and provide an example of how the transition to cell cycle checkpoint activation during development is accomplished by maternally programmed increases in the DNA-to-cytoplasm ratio.


1995 ◽  
Vol 309 (3) ◽  
pp. 951-957 ◽  
Author(s):  
T S Tsuruda ◽  
M H Watson ◽  
D B Foster ◽  
J J J C Lin ◽  
A S Mak

We have reported previously that each smooth-muscle caldesmon binds predominantly to a region within residues 142-227 of tropomyosin, but a weaker binding site also exists at the N-terminal region of tropomyosin [Watson, Kuhn, Novy, Lin and Mak (1990) J. Biol. Chem. 265, 18860-18866]. In view of recent evidence for the presence of tropomyosin-binding sites at both the N- and C-terminal domains of caldesmon, we have studied the binding of the N- and C-terminal fragments of human fibroblast caldesmon expressed in Escherichia coli to tropomyosin and its CNBr fragments. The N-terminal fragment, CaD40 (residues 1-152), binds tropomyosin, but the interaction is mostly abolished in the presence of actin. CaD40 binds strongly to Cn1B(142-281) of tropomyosin, but weakly to Cn1A(11-127). The C-terminal fragment, CaD39, which corresponds to residues 443-736 of gizzard caldesmon, binds tropomyosin, and the interaction is enhanced by actin. CaD39 binds to both Cn1A(11-127) and Cn1B(142-281) of tropomyosin. Our results suggest that the N-terminal domain of caldesmon interacts with the C-terminal half of one tropomyosin molecule, whereas the C-terminal domain binds to both N- and C-terminal regions of the adjacent tropomyosin molecule along the actin filament. In addition, the binding of the N-terminal domain of caldesmon to the actin-tropomyosin filament is weak, which may allow this domain to project off the thin filament to interact with myosin.


2004 ◽  
Vol 15 (12) ◽  
pp. 5318-5328 ◽  
Author(s):  
Stéphane Brunet ◽  
Teresa Sardon ◽  
Timo Zimmerman ◽  
Torsten Wittmann ◽  
Rainer Pepperkok ◽  
...  

TPX2 has multiple functions during mitosis, including microtubule nucleation around the chromosomes and the targeting of Xklp2 and Aurora A to the spindle. We have performed a detailed domain functional analysis of TPX2 and found that a large N-terminal domain containing the Aurora A binding peptide interacts directly with and nucleates microtubules in pure tubulin solutions. However, it cannot substitute the endogenous TPX2 to support microtubule nucleation in response to Ran guanosine triphosphate (GTP) and spindle assembly in egg extracts. By contrast, a large C-terminal domain of TPX2 that does not bind directly to pure microtubules and does not bind Aurora A kinase rescues microtubule nucleation in response to RanGTP and spindle assembly in TPX2-depleted extract. These and previous results suggest that under physiological conditions, TPX2 is essential for microtubule nucleation around chromatin and functions in a network of other molecules, some of which also are regulated by RanGTP.


2006 ◽  
Vol 173 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Shan Yan ◽  
Howard D. Lindsay ◽  
W. Matthew Michael

TopBP1-like proteins, which include Xenopus laevis Xmus101, are required for DNA replication and have been linked to replication checkpoint control. A direct role for TopBP1/Mus101 in checkpoint control has been difficult to prove, however, because of the requirement for replication in generating the DNA structures that activate the checkpoint. Checkpoint activation occurs in X. laevis egg extracts upon addition of an oligonucleotide duplex (AT70). We show that AT70 bypasses the requirement for replication in checkpoint activation. We take advantage of this replication-independent checkpoint system to determine the role of Xmus101 in the checkpoint. We find that Xmus101 is essential for AT70-mediated checkpoint signaling and that it functions to promote phosphorylation of Claspin bound Chk1 by the ataxia-telangiectasia and Rad-3–related (ATR) protein kinase. We also identify a separation-of-function mutant of Xmus101. In extracts expressing this mutant, replication of sperm chromatin occurs normally; however, the checkpoint response to stalled replication forks fails. These data demonstrate that Xmus101 functions directly during signal relay from ATR to Chk1.


2020 ◽  
Vol 21 (20) ◽  
pp. 7564
Author(s):  
Dipon Das ◽  
Molly L. Bristol ◽  
Pietro Pichierri ◽  
Iain M. Morgan

Human papillomaviruses have 8kbp DNA episomal genomes that replicate autonomously from host DNA. During initial infection, the virus increases its copy number to 20–50 copies per cell, causing torsional stress on the replicating DNA. This activates the DNA damage response (DDR) and HPV replicates its genome, at least in part, using homologous recombination. An active DDR is on throughout the HPV life cycle. Two viral proteins are required for replication of the viral genome; E2 binds to 12bp palindromic sequences around the A/T rich origin of replication and recruits the viral helicase E1 via a protein–protein interaction. E1 forms a di-hexameric complex that replicates the viral genome in association with host factors. Transient replication assays following transfection with E1–E2 expression plasmids, along with an origin containing plasmid, allow monitoring of E1-E2 replication activity. Incorporating a bacterial lacZ gene into the origin plasmid allows for the determination of replication fidelity. Here we describe how we exploited this system to investigate replication and repair in mammalian cells, including using damaged DNA templates. We propose that this system has the potential to enhance the understanding of cellular components involved in DNA replication and repair.


2011 ◽  
Vol 18 (8) ◽  
pp. 1221-1228 ◽  
Author(s):  
Maryam Imam ◽  
Yengkhom Sangeeta Devi ◽  
Akhilesh K. Verma ◽  
Virander Singh Chauhan

ABSTRACTRecombinantPlasmodium falciparummerozoite surface protein 3 (PfMSP3F) and a 24-kDa fragment from its N terminus (MSP3N) that includes the essential conserved domain, which elicits the maximum antibody (Ab)-dependent cellular inhibition (ADCI), were expressed as soluble proteins inEscherichia coli. Both proteins were found to be stable in both soluble and lyophilized forms. Immunization with MSP3F and MSP3N formulated separately with two human-compatible adjuvants, aluminum hydroxide (Alhydrogel) and Montanide ISA 720, produced significant antibody responses in mice and rabbits. Polyclonal Abs against both antigens recognized native MSP3 in the parasite lysate. These two Abs also recognized two synthetic peptides, previously characterized to possess B cell epitopes from the N-terminal region. Antibody depletion assay showed that most of the IgG response is directed toward the N-terminal region of the full protein. Anti-MSP3F and anti-MSP3N rabbit antibodies did not inhibit merozoite invasion or intraerythrocytic development but significantly reduced parasitemia in the presence of human monocytes. The ADCI demonstrated by anti-MSP3N antibodies was comparable to that exhibited by anti-MSP3F antibodies (both generated in rabbit). These results suggest that the N-terminal fragment of MSP3 can be considered a vaccine candidate that can form part of a multigenic vaccine against malaria.


2020 ◽  
Vol 21 (17) ◽  
pp. 6233
Author(s):  
Hideyuki Hara ◽  
Suehiro Sakaguchi

The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.


Sign in / Sign up

Export Citation Format

Share Document