scholarly journals Structure and Function of Colicin S4, a Colicin with a Duplicated Receptor-binding Domain

2008 ◽  
Vol 284 (10) ◽  
pp. 6403-6413 ◽  
Author(s):  
Thomas Arnold ◽  
Kornelius Zeth ◽  
Dirk Linke
2021 ◽  
Author(s):  
Daniel L Moss ◽  
Jay Rappaport

The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and the subsequent COVID-19 pandemic has significantly impacted the world not just with disease and death but also economic turmoil. The rapid development and deployment of extremely effective vaccines against SARS-CoV-2 has made the end of the pandemic a reality within reach. However, as the virus spreads it has acquired mutations; and thus, variants of concern have emerged that are more infectious and reduce the efficacy of existing vaccines. While promising efforts are underway to combat these variants, the evolutionary pressures leading to these variants are poorly understood. To that end, here we have studied the effects of three amino-acid substitutions on the structure and function of the SARS-CoV-2 spike glycoprotein receptor-binding domain found in several variants of concern such as B.1.1.7, B.1.351 and P.1 that are now circulating. We found that these substitutions alter the RBD structure and stability, as well as its ability to bind to ACE2, which may have opposing and compensatory effects. These findings provide new insights into how these Variants of Concern (VOC) may have been selected to optimize infectivity while maintaining the structure and stability of the receptor binding domain.


2021 ◽  
pp. 167357
Author(s):  
Andrey M. Grishin ◽  
Nataliya V. Dolgova ◽  
Shelby Landreth ◽  
Olivier Fisette ◽  
Ingrid J. Pickering ◽  
...  

2021 ◽  
Author(s):  
Kun Qu ◽  
Xiaoli Xiong ◽  
Katarzyna A. Ciazynska ◽  
Andrew P. Carter ◽  
John A. G. Briggs

AbstractThe spike protein (S) of SARS-CoV-2 has been observed in three distinct pre-fusion conformations: locked, closed and open. Of these, the locked conformation was not previously observed for SARS-CoV-1 S and its function remains poorly understood. Here we engineered a SARS-CoV-2 S protein construct “S-R/x3” to arrest SARS-CoV-2 spikes in the locked conformation by a disulfide bond. Using this construct we determined high-resolution structures revealing two distinct locked states, with or without the D614G substitution that has become fixed in the globally circulating SARS-CoV-2 strains. The D614G mutation induces a structural change in domain D from locked-1 to locked-2 conformation to alter spike dynamics, promoting transition into the closed conformation from which opening of the receptor binding domain is permitted. The transition from locked to closed conformations is additionally promoted by a change from low to neutral pH. We propose that the locked conformations of S are present in the acidic cellular compartments where virus is assembled and egresses. In this model, release of the virion into the neutral pH extracellular space would favour transition to the closed form which itself can stochastically transition into the open form. The S-R/x3 construct provides a tool for the further structural and functional characterization of the locked conformations of S, as well as how sequence changes might alter S assembly and regulation of receptor binding domain dynamics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun-Ji Shin ◽  
Julia König-Beihammer ◽  
Ulrike Vavra ◽  
Jennifer Schwestka ◽  
Nikolaus F. Kienzl ◽  
...  

Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.


Author(s):  
Fei Yu ◽  
Rong Xiang ◽  
Xiaoqian Deng ◽  
Lili Wang ◽  
Zhengsen Yu ◽  
...  

Abstract The outbreaks of severe acute respiratory syndrome (SARS) and Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV and SARS-CoV-2, respectively, have posed severe threats to global public health and the economy. Treatment and prevention of these viral diseases call for the research and development of human neutralizing monoclonal antibodies (NMAbs). Scientists have screened neutralizing antibodies using the virus receptor-binding domain (RBD) as an antigen, indicating that RBD contains multiple conformational neutralizing epitopes, which are the main structural domains for inducing neutralizing antibodies and T-cell immune responses. This review summarizes the structure and function of RBD and RBD-specific NMAbs against SARS-CoV and SARS-CoV-2 currently under development.


Author(s):  
Akhileshwar Srivastava ◽  
Divya Singh

Presently, an emerging disease (COVID-19) has been spreading across the world due to coronavirus (SARS-CoV2). For treatment of SARS-CoV2 infection, currently hydroxychloroquine has been suggested by researchers, but it has not been found enough effective against this virus. The present study based on in silico approaches was designed to enhance the therapeutic activities of hydroxychloroquine by using curcumin as an adjunct drug against SARS-CoV2 receptor proteins: main-protease and S1 receptor binding domain (RBD). The webserver (ANCHOR) showed the higher protein stability for both receptors with disordered score (<0.5). The molecular docking analysis revealed that the binding energy (-24.58 kcal/mol) of hydroxychloroquine was higher than curcumin (-20.47 kcal/mol) for receptor main-protease, whereas binding energy of curcumin (<a>-38.84</a> kcal/mol) had greater than hydroxychloroquine<a> (-35.87</a> kcal/mol) in case of S1 receptor binding domain. Therefore, this study suggested that the curcumin could be used as combination therapy along with hydroxychloroquine for disrupting the stability of SARS-CoV2 receptor proteins


Author(s):  
Bipin Singh

: The recent outbreak of novel coronavirus (SARS-CoV-2 or 2019-nCoV) and its worldwide spread is posing one of the major threats to human health and the world economy. It has been suggested that SARS-CoV-2 is similar to SARSCoV based on the comparison of the genome sequence. Despite the genomic similarity between SARS-CoV-2 and SARSCoV, the spike glycoprotein and receptor binding domain in SARS-CoV-2 shows the considerable difference compared to SARS-CoV, due to the presence of several point mutations. The analysis of receptor binding domain (RBD) from recently published 3D structures of spike glycoprotein of SARS-CoV-2 (Yan, R., et al. (2020); Wrapp, D., et al. (2020); Walls, A. C., et al. (2020)) highlights the contribution of a few key point mutations in RBD of spike glycoprotein and molecular basis of its efficient binding with human angiotensin-converting enzyme 2 (ACE2).


Sign in / Sign up

Export Citation Format

Share Document