scholarly journals Staphylopine, pseudopaline, and yersinopine dehydrogenases: A structural and kinetic analysis of a new functional class of opine dehydrogenase

2018 ◽  
Vol 293 (21) ◽  
pp. 8009-8019 ◽  
Author(s):  
Jeffrey S. McFarlane ◽  
Cara L. Davis ◽  
Audrey L. Lamb

Opine dehydrogenases (ODHs) from the bacterial pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia pestis perform the final enzymatic step in the biosynthesis of a new class of opine metallophores, which includes staphylopine, pseudopaline, and yersinopine, respectively. Growing evidence indicates an important role for this pathway in metal acquisition and virulence, including in lung and burn-wound infections (P. aeruginosa) and in blood and heart infections (S. aureus). Here, we present kinetic and structural characterizations of these three opine dehydrogenases. A steady-state kinetic analysis revealed that the three enzymes differ in α-keto acid and NAD(P)H substrate specificity and nicotianamine-like substrate stereoselectivity. The structural basis for these differences was determined from five ODH X-ray crystal structures, ranging in resolution from 1.9 to 2.5 Å, with or without NADP+ bound. Variation in hydrogen bonding with NADPH suggested an explanation for the differential recognition of this substrate by these three enzymes. Our analysis further revealed candidate residues in the active sites required for binding of the α-keto acid and nicotianamine-like substrates and for catalysis. This work reports the first structural kinetic analyses of enzymes involved in opine metallophore biosynthesis in three important bacterial pathogens of humans.

2021 ◽  
Author(s):  
Song-Jeng Isaac Huang ◽  
Adil Muneeb ◽  
Sabhapathy Palani ◽  
Anjaiah Sheelam ◽  
Bayikadi Khasimsaheb ◽  
...  

Developing a non-precious metal electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is desirable for low-cost energy conversion devices. Herein, we designed and developed a new class...


2021 ◽  
Vol 7 (2) ◽  
pp. eabd4413
Author(s):  
Jung-Hoon Lee ◽  
Daniel Bollschweiler ◽  
Tillman Schäfer ◽  
Robert Huber

The chromatin-modifying histone deacetylases (HDACs) remove acetyl groups from acetyl-lysine residues in histone amino-terminal tails, thereby mediating transcriptional repression. Structural makeup and mechanisms by which multisubunit HDAC complexes recognize nucleosomes remain elusive. Our cryo–electron microscopy structures of the yeast class II HDAC ensembles show that the HDAC protomer comprises a triangle-shaped assembly of stoichiometry Hda12-Hda2-Hda3, in which the active sites of the Hda1 dimer are freely accessible. We also observe a tetramer of protomers, where the nucleosome binding modules are inaccessible. Structural analysis of the nucleosome-bound complexes indicates how positioning of Hda1 adjacent to histone H2B affords HDAC catalysis. Moreover, it reveals how an intricate network of multiple contacts between a dimer of protomers and the nucleosome creates a platform for expansion of the HDAC activities. Our study provides comprehensive insight into the structural plasticity of the HDAC complex and its functional mechanism of chromatin modification.


Sign in / Sign up

Export Citation Format

Share Document