scholarly journals The USP14–NLRC5 pathway inhibits titanium particle–induced osteolysis in mice by suppressing NF-κB and PI3K/AKT activities

2020 ◽  
Vol 295 (20) ◽  
pp. 7018-7032 ◽  
Author(s):  
Guibin Fang ◽  
Yuan Fu ◽  
Shixun Li ◽  
Junxiong Qiu ◽  
Manyuan Kuang ◽  
...  

Total hip arthroplasty (THA) is a widely-used surgical intervention for treating patients with end-stage degenerative and inflammatory osteoarthropathy. However, wear particles from the artificial titanium joint can induce osteolysis, limiting the long-term survivorship of THA. Monocyte/macrophage lineage cells are the key players in the response to wear particles, and the proinflammatory NF-κB and phosphoinositide 3-kinase (PI3K)–AKT Ser/Thr kinase (AKT)-signaling pathways have been shown to be the most important contributors to wear particle–induced osteolysis. In contrast, ubiquitin-specific protease 14 (USP14) specifically removes the polyubiquitin chains from the nucleotide-binding and oligomerization domain (NOD)-like receptor family Caspase recruitment domain (CARD)–containing 5 (NLRC5) and thereby enhances the NLRC5-mediated inhibition of NF-κB signaling. In this study, we aimed to clarify the role of the USP14–NLRC5 pathway in wear particle–induced osteolysis in vitro and in vivo. We found that NLRC5 or USP14 overexpression inhibits titanium particle–induced proinflammatory tumor necrosis factor α (TNFα) production and NF-κB pathway activation, and it also decreases M1 macrophage polarization and PI3K/AKT pathway activation. Of note, NLRC5 and USP14 overexpression attenuated titanium particle–induced cranial osteolysis in mice. In conclusion, the findings of our study indicate that the USP14–NLRC5 pathway inhibits titanium particle–induced osteolysis by suppressing the NF-κB and PI3K/AKT pathways both in vitro and in vivo.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jie Yu ◽  
Peiwei Chai ◽  
Minyue Xie ◽  
Shengfang Ge ◽  
Jing Ruan ◽  
...  

Abstract Background Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Results Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. Conclusion We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

2021 ◽  
Author(s):  
Huiwen Tian ◽  
Shumei Lin ◽  
Jing Wu ◽  
Ming Ma ◽  
Jian Yu ◽  
...  

Abstract Corneal transplantation rejection remains a major threat to the success rate in high-risk patients. Given the many side effects presented by traditional immunosuppressants, there is an urgency to clarify the mechanism of corneal transplantation rejection and to identify new therapeutic targets. Kaempferol is a natural flavonoid that has been proven in various studies to possess anti-inflammatory, antioxidant, anticancer, and neuroprotective properties. However, the relationship between kaempferol and corneal transplantation remains largely unexplored. To address this, both in vivo and in vitro, we established a model of corneal allograft transplantation in Wistar rats and an LPS-induced inflammatory model in THP-1 derived human macrophages. In the transplantation experiments, we observed an enhancement in the NLRP3 / IL-1 β axis and in M1 macrophage polarization post-operation. In groups to which kaempferol intraperitoneal injections were administered, this response was effectively reduced. However, the effect of kaempferol was reversed after the application of autophagy inhibitors. Similarly, in the inflammatory model, we found that different concentrations of kaempferol can reduce the LPS-induced M1 polarization and NLRP3 inflammasome activation. Moreover, we confirmed that kaempferol induced autophagy and that autophagy inhibitors reversed the effect in macrophages. In conclusion, we found that kaempferol can inhibit the activation of the NLRP3 inflammasomes by inducing autophagy, thus inhibiting macrophage polarization, and ultimately alleviating corneal transplantation rejection. Thus, our study suggests that kaempferol could be used as a potential therapeutic agent in the treatment of allograft rejection.


2021 ◽  
Author(s):  
Christine Poon

AbstractArthroplasty implants e.g. hip, knee, spinal disc sustain relatively high compressive loading and friction wear, which lead to the formation of wear particles or debris between articulating surfaces. Despite advances in orthopaedic materials and surface treatments, the production of wear debris from any part of a joint arthroplasty implant is currently unavoidable. Implant wear debris induces host immune responses and inflammation, which causes patient pain and ultimately implant failure through progressive inflammation-mediated osteolysis and implant loosening, where the severity and rate of periprosthetic osteolysis depends on the material and physicochemical characteristics of the wear particles. Evaluating the cytotoxicity of implant wear particles is important for regulatory approved clinical application of arthroplasty implants, as is the study of cell-particle response pathways. However, the wear particles of polymeric materials commonly used for arthroplasty implants tend to float when placed in culture media, which limits their contact with cell cultures. This study reports a simple means of suspending wear particles in liquid medium using sodium carboxymethyl cellulose (NaCMC) to provide a more realistic proxy of the interaction between cells and tissues to wear particles in vivo, which are free-floating in synovial fluid within the joint cavity. Low concentrations of NaCMC dissolved in culture medium were found to be effective for suspending polymeric wear particles. Such suspensions may be used as more physiologically-relevant means for testing cellular responses to implant wear debris, as well as studying the combinative effects of shear and wear particle abrasion on cells in a dynamic culture environments such as perfused tissue-on-chip devices.


Blood ◽  
2020 ◽  
Vol 136 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Kunpeng Wu ◽  
Yan Yuan ◽  
Huihui Yu ◽  
Xin Dai ◽  
Shu Wang ◽  
...  

Abstract The diversity of the human microbiome heralds the difference of the impact that gut microbial metabolites exert on allogenic graft-versus-host (GVH) disease (GVHD), even though short-chain fatty acids and indole were demonstrated to reduce its severity. In this study, we dissected the role of choline-metabolized trimethylamine N-oxide (TMAO) in the GVHD process. Either TMAO or a high-choline diet enhanced the allogenic GVH reaction, whereas the analog of choline, 3,3-dimethyl-1-butanol reversed TMAO-induced GVHD severity. Interestingly, TMAO-induced alloreactive T-cell proliferation and differentiation into T-helper (Th) subtypes was seen in GVHD mice but not in in vitro cultures. We thus investigated the role of macrophage polarization, which was absent from the in vitro culture system. F4/80+CD11b+CD16/32+ M1 macrophage and signature genes, IL-1β, IL-6, TNF-α, CXCL9, and CXCL10, were increased in TMAO-induced GVHD tissues and in TMAO-cultured bone marrow–derived macrophages (BMDMs). Inhibition of the NLRP3 inflammasome reversed TMAO-stimulated M1 features, indicating that NLRP3 is the key proteolytic activator involved in the macrophage’s response to TMAO stimulation. Consistently, mitochondrial reactive oxygen species and enhanced NF-κB nuclear relocalization were investigated in TMAO-stimulated BMDMs. In vivo depletion of NLRP3 in GVHD recipients not only blocked M1 polarization but also reversed GVHD severity in the presence of TMAO treatment. In conclusion, our data revealed that TMAO-induced GVHD progression resulted from Th1 and Th17 differentiation, which is mediated by the polarized M1 macrophage requiring NLRP3 inflammasome activation. It provides the link among the host choline diet, microbial metabolites, and GVH reaction, shedding light on alleviating GVHD by controlling choline intake.


2021 ◽  
Author(s):  
Shih-Shih Chen ◽  
Jacqueline Barrientos ◽  
Gerardo Ferrer ◽  
Priyadarshini Ravichandran ◽  
Michael Ibrahim ◽  
...  

Abstract Inhibitors of Bruton’s Tyrosine Kinase (BTKi) and phosphoinositide 3-kinase (PI3Ki) have significantly improved therapy of chronic lymphocytic leukemia (CLL). However, the emergence of resistance to BTKi has introduced an unmet therapeutic need. Here we demonstrate in vitro and in vivo the essential roles of PI3K-δ for CLL B-cell survival and migration and of PI3K-γ in T-cell migration and macrophage polarization; and more efficacious inhibition in CLL-cell burden by dual inhibition of PI3K-δ,γ. We also report an ibrutinib-resistant CLL case, whose clone exhibited BTK and PLCγ2 mutations, responded immediately to single agent duvelisib with a redistribution lymphocytosis followed by a partial clinical remission associated with subsequent modulation of T and myeloid cells. CLL samples from patients progressed on ibrutinib were also responsive to duvelisib in patient-derived xenografts irrespective of BTK mutations. Our data support dual inhibition of PI3K-δ,γ as a valuable approach for therapeutic interventions, including patients refractory to BTKi.


2020 ◽  
Vol 102-B (11) ◽  
pp. 1527-1534
Author(s):  
Kumi Orita ◽  
Yukihide Minoda ◽  
Ryo Sugama ◽  
Yoichi Ohta ◽  
Hideki Ueyama ◽  
...  

Aims Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. Methods A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy. Results The total number of polyethylene wear particles obtained from the knees with E1 (mean 6.9, SD 4.0 × 107 counts/knee) was greater than that obtained from those with ArCom (mean 2.2, SD 2.6 × 107 counts/knee) (p = 0.001). The particle size (equivalent circle of diameter) from the knees with E1 was smaller (mean 0.5 μm, SD 0.1) than that of knees with ArCom (mean 1.5, SD 0.3 μm) (p = 0.001). The aspect ratio of particles from the knees with E1 (mean 1.3, SD 0.1) was smaller than that with ArCom (mean 1.4, SD 0.1) (p < 0.001 ). Conclusion This is the first report of in vivo wear particle analysis of E1. E1 polyethylene did not reduce the number of in vivo polyethylene wear particles compared with ArCom in early clinical stage. Further careful follow-up of newly introduced E1 for TKA should be carried out. Cite this article: Bone Joint J 2020;102-B(11):1527–1534.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shaoxi Yan ◽  
Mo Zhou ◽  
Xiaoyun Zheng ◽  
Yuanyuan Xing ◽  
Juan Dong ◽  
...  

Inflammation causes tissue damage and promotes ventricular remodeling after myocardial infarction (MI), and the infiltration and polarization of macrophages play an important role in regulating inflammation post-MI. Here, we investigated the anti-inflammatory function of curcumin after MI and studied its relationship with macrophage polarization. In vivo, curcumin not only attenuated ventricular remodeling 3 months after MI but also suppressed inflammation during the first 7 days post-MI. Importantly, the results of qPCR and immunochemistry showed that curcumin decreased M1 (iNOS, CCL2, and CD86) but increased M2 macrophage (Arg1, CD163, and CD206) marker expression in the myocardium of MI mice during the first 7 days post-MI. And flow cytometry analysis indicated that curcumin suppressed M1 (CD45+Gr-1-CD11b+iNOS+ cells) but enhanced M2 macrophage (CD45+Gr-1-CD11b+Arg+ cells) expansion in the myocardium of MI mice during the first 7 days post-MI. In vitro, curcumin decreased LPS/IFNγ-elevated M1 macrophage marker (iNOS and CD86) expression and the proportion of M1 macrophages (iNOS+F4/80+ cells) but increased LPS/IFNγ-suppressed M2 macrophage marker (Arg1 and CD206) expression and the proportion of M2 macrophages (Arg1+F4/80+ cells). In addition, curcumin modulates M1/M2 macrophage polarization partly via AMPK. In conclusion, curcumin suppressed the MI-induced inflammation by modulating macrophage polarization partly via the AMPK pathway.


2021 ◽  
Author(s):  
Yang Jiao ◽  
Ti Zhang ◽  
Chengmi Zhang ◽  
Haiying Ji ◽  
Xingyu Tong ◽  
...  

Abstract Background: Polymorphonuclear neutrophils (PMNs) have been demonstrated to play a role in proinflammatory M1 activation and macrophage (Mϕ) pyroptosis in sepsis. Accumulating evidence suggests PMN-derived exosomes as a new subcellular entity acting as a fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-derived exosomes in sepsis remains unclear. This study aimed to determine whether PMN-derived exosomes play a role in proinflammatory M1 activation and Mϕ pyroptosis in sepsis and explore the potential mechanisms involved. Methods: Exosomes were isolated from the supernatant of PMNs activated with phosphate buffered saline (PBS) or tumor necrosis factor (TNF)-α, cocultured with Raw264.7 macrophages or BMDMs, and then assayed for macrophage polarization and pyroptosis. To examine the role of exosomes in vivo, PMN-derived exosomes were administered to mice, and then examined for lung inflammation. Results: After activated by TNF-α, PMNs released exosomes (TNF-Exo) to promote M1 macrophage activation both in vivo and in vitro. In addition, TNF-Exo primed macrophages for pyroptosis by upregulating NLRP3 inflammasome expression through NF-κB signaling pathway. Mechanistic studies demonstrated that miR-30d-5p mediated the function of TNF-Exo by targeting SOCS-1 and SIRT1 in macrophages. Furthermore, treatment of miR-30d-5p inhibitors in vivo significantly decreased cecal ligation and puncture (CLP) or TNF-Exo-induced M1 macrophage activation and macrophage death in the lung. Lung injury was also alleviated by miR-30d-5p inhibitors.Conclusions: In this study, we identified a novel mechanism of PMN-Mϕ interaction in sepsis, demonstrating that exosomal miR-30d-5p from PMNs induced M1 macrophage polarization and primed Mϕ for pyroptosis by activating NF-κB signaling. These findings suggest a previously unidentified role of neutrophil-derived exosomes in sepsis and may lead to new therapeutic approaches.


2021 ◽  
Vol 9 (3) ◽  
pp. e001657
Author(s):  
Da-Liang Ou ◽  
Chia-Wei Chen ◽  
Chia-Lang Hsu ◽  
Chih-Hung Chung ◽  
Zi-Rui Feng ◽  
...  

BackgroundRegorafenib and other multikinase inhibitors may enhance antitumor efficacy of anti-program cell death-1 (anti-PD1) therapy in hepatocellular carcinoma (HCC). Its immunomodulatory effects, besides anti-angiogenesis, were not clearly defined.MethodsIn vivo antitumor efficacy was tested in multiple syngeneic liver cancer models. Murine bone marrow–derived macrophages (BMDMs) were tested in vitro for modulation of polarization by regorafenib and activation of cocultured T cells. Markers of M1/M2 polarization were measured by quantitative reverse transcription PCR (RT-PCR), arginase activity, flow cytometry, and ELISA. Knockdown of p38 kinase and downstream Creb1/Klf4 signaling on macrophage polarization were confirmed by using knockdown of the upstream MAPK14 kinase, chemical p38 kinase inhibitor, and chromatin immunoprecipitation.ResultsRegorafenib (5 mg/kg/day, corresponding to about half of human clinical dosage) inhibited tumor growth and angiogenesis in vivo similarly to DC-101 (anti-VEGFR2 antibody) but produced higher T cell activation and M1 macrophage polarization, increased the ratio of M1/M2 polarized BMDMs and proliferation/activation of cocultured T cells in vitro, indicating angiogenesis-independent immunomodulatory effects. Suppression of p38 kinase phosphorylation and downstream Creb1/Klf4 activity in BMDMs by regorafenib reversed M2 polarization. Regorafenib enhanced antitumor efficacy of adoptively transferred antigen-specific T cells. Synergistic antitumor efficacy between regorafenib and anti-PD1 was associated with multiple immune-related pathways in the tumor microenvironment.ConclusionRegorafenib may enhance antitumor immunity through modulation of macrophage polarization, independent of its anti-angiogenic effects. Optimization of regorafenib dosage for rational design of combination therapy regimen may improve the therapeutic index in the clinic.


Sign in / Sign up

Export Citation Format

Share Document