scholarly journals The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into the endoplasmic reticulum in Saccharomyces cerevisiae

2020 ◽  
Vol 295 (30) ◽  
pp. 10406-10419 ◽  
Author(s):  
Akira Hosomi ◽  
Kazuko Iida ◽  
Toshihiko Cho ◽  
Hidetoshi Iida ◽  
Masashi Kaneko ◽  
...  

Soluble proteins destined for the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER). The importance of N-terminal signal peptides for ER translocation has been extensively examined over the past few decades. However, in the budding yeast Saccharomyces cerevisiae, a few proteins devoid of a signal peptide are still translocated into the ER and then N-glycosyl-ated. Using signal peptide-truncated reporter proteins, here we report the detection of significant translocation of N-terminal signal peptide-truncated proteins in a yeast mutant strain (ste24Δ) that lacks the endopeptidase Ste24 at the ER membrane. Furthermore, several ER/cytosolic proteins, including Sec61, Sec66, and Sec72, were identified as being involved in the translocation process. On the basis of screening for 20 soluble proteins that may be N-glycosylated in the ER in the ste24Δ strain, we identified the transcription factor Rme1 as a protein that is partially N-glycosylated despite the lack of a signal peptide. These results clearly indicate that some proteins lacking a signal peptide can be translocated into the ER and that Ste24 typically suppresses this process.

2003 ◽  
Vol 31 (6) ◽  
pp. 1243-1247 ◽  
Author(s):  
B. Martoglio

Signal sequences are the addresses of proteins destined for secretion. In eukaryotic cells, they mediate targeting to the endoplasmic reticulum membrane and insertion into the translocon. Thereafter, signal sequences are cleaved from the pre-protein and liberated into the endoplasmic reticulum membrane. We have recently reported that some liberated signal peptides are further processed by the intramembrane-cleaving aspartic protease signal peptide peptidase. Cleavage in the membrane-spanning portion of the signal peptide promotes the release of signal peptide fragments from the lipid bilayer. Typical processes that include intramembrane proteolysis is the regulatory or signalling function of cleavage products. Likewise, signal peptide fragments liberated upon intramembrane cleavage may promote such post-targeting functions in the cell.


1990 ◽  
Vol 10 (6) ◽  
pp. 3163-3173
Author(s):  
C A Kaiser ◽  
D Botstein

Three randomly derived sequences that can substitute for the signal peptide of Saccharomyces cerevisiae invertase were tested for the efficiency with which they can translocate invertase or beta-galactosidase into the endoplasmic reticulum. The rate of translocation, as measured by glycosylation, was estimated in pulse-chase experiments to be less than 6 min. When fused to beta-galactosidase, these peptides, like the normal invertase signal sequence, direct the hybrid protein to a perinuclear region, consistent with localization to the endoplasmic reticulum. The diversity of function of random peptides was studied further by immunofluorescence localization of proteins fused to 28 random sequences: 4 directed the hybrid to the endoplasmic reticulum, 3 directed it to the mitochondria, and 1 directed it to the nucleus.


2021 ◽  
Author(s):  
Yi-Shi Liu ◽  
Yicheng Wang ◽  
Xiaoman Zhou ◽  
LinPei Zhang ◽  
Ganglong Yang ◽  
...  

Abstract We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is regulated by endoplasmic reticulum associated degradation (ERAD); however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR–Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 together upregulate GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, remaining the uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 32 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55 and CD48 enhance GPI biosynthesis. ARV1 is essential for the GPI upregulation by CD55 precursor. Our data demonstrate an ARV1-dependent regulatory connection between GPI biosynthesis and precursors of select GPI-anchored proteins that are under the control of ERAD.


1989 ◽  
Vol 108 (5) ◽  
pp. 1647-1655 ◽  
Author(s):  
T J Stoller ◽  
D Shields

We have investigated the role of the somatostatin propeptide in mediating intracellular transport and sorting to the regulated secretory pathway. Using a retroviral expression vector, two fusion proteins were expressed in rat pituitary (GH3) cells: a control protein consisting of the beta-lactamase signal peptide fused to chimpanzee alpha-globin (142 amino acids); and a chimera of the somatostatin signal peptide and proregion (82 amino acids) fused to alpha-globin. Control globin was translocated into the endoplasmic reticulum as determined by accurate cleavage of its signal peptide; however, alpha-globin was not secreted but was rapidly and quantitatively degraded intracellularly with a t 1/2 of 4-5 min. Globin degradation was insensitive to chloroquine, a drug which inhibits lysosomal proteases, but was inhibited at 16 degrees C suggesting proteolysis occurred during transport to the cis-Golgi apparatus. In contrast to the control globin, approximately 30% of the somatostatin propeptide-globin fusion protein was transported to the distal elements of the Golgi apparatus where it was endoproteolytically processed. Processing of the chimera occurred in an acidic intracellular compartment since cleavage was inhibited by 25 microM chloroquine. 60% of the transported chimera was cleaved at the Arg-Lys processing site in native prosomatostatin yielding "mature" alpha-globin. Most significantly, approximately 50% of processed alpha-globin was sorted to the regulated pathway and secreted in response to 8-Br-cAMP. We conclude that the somatostatin propeptide mediated transport of alpha-globin from the endoplasmic reticulum to the trans-Golgi network by protecting molecules from degradation and in addition, facilitated packaging of alpha-globin into vesicles whose secretion was stimulated by cAMP.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Qi Huang ◽  
Tracy Palmer

ABSTRACT The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway. IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.


2017 ◽  
Vol 83 (14) ◽  
Author(s):  
Jichen Bao ◽  
Mingtao Huang ◽  
Dina Petranovic ◽  
Jens Nielsen

ABSTRACT The yeast Saccharomyces cerevisiae is widely used to produce biopharmaceutical proteins. However, the limited capacity of the secretory pathway may reduce its productivity. Here, we increased the secretion of a heterologous α-amylase, a model protein used for studying the protein secretory pathway in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species resulting from the heterologous α-amylase production was reduced. A genome-wide expression analysis indicated decreased endoplasmic reticulum stress in the strain that moderately overexpressed SEC16, which was consistent with a decreased volume of the endoplasmic reticulum. Additionally, fewer mitochondria were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance. IMPORTANCE There is an increasing demand for recombinant proteins to be used as enzymes and pharmaceuticals. The yeast Saccharomyces cerevisiae is a cell factory that is widely used to produce recombinant proteins. Our study revealed that moderate overexpression of SEC16 increased recombinant protein secretion in S. cerevisiae. This new strategy can be combined with other targets to engineer cell factories to efficiently produce protein in the future.


2010 ◽  
Vol 430 (3) ◽  
pp. 497-510 ◽  
Author(s):  
Yiguo Zhang ◽  
John D. Hayes

Nrf1 [NF-E2 (nuclear factor-erythroid 2)-related factor 1] is a CNC (cap'n'collar) bZIP (basic-region leucine zipper) transcription factor that is tethered to ER (endoplasmic reticulum) and nuclear envelope membranes through its N-terminal signal peptide (residues 1–30). Besides the signal peptide, amino acids 31–90 of Nrf1 also negatively regulate the CNC-bZIP factor. In the present study we have tested the hypothesis that amino acids 31–90 of Nrf1, and the overlapping NHB2 (N-terminal homology box 2; residues 82–106), inhibit Nrf1 because they control its topology within membranes. This region contains three amphipathic α-helical regions comprising amino acids 31–50 [called the SAS (signal peptide-associated sequence)], 55–82 [called the CRACs (cholesterol-recognition amino acid consensus sequences)] and 89–106 (part of NHB2). We present experimental data showing that the signal peptide of Nrf1 contains a TM1 (transmembrane 1) region (residues 7–24) that is orientated across the ER membrane in an Ncyt/Clum fashion with its N-terminus facing the cytoplasm and its C-terminus positioned in the lumen of the ER. Once Nrf1 is anchored to the ER membrane through TM1, the remaining portion of the N-terminal domain (NTD, residues 1–124) is transiently translocated into the ER lumen. Thereafter, Nrf1 adopts a topology in which the SAS is inserted into the membrane, the CRACs are probably repartitioned to the cytoplasmic side of the ER membrane, and NHB2 may serve as an anchor switch, either lying on the luminal surface of the ER or traversing the membrane with an Ncyt/Clum orientation. Thus Nrf1 can adopt several topologies within membranes that are determined by its NTD.


1987 ◽  
Vol 105 (6) ◽  
pp. 2905-2914 ◽  
Author(s):  
P Bird ◽  
M J Gething ◽  
J Sambrook

In Saccharomyces cerevisiae, nascent carboxypeptidase Y (CPY) is directed into the endoplasmic reticulum by an NH2-terminal signal peptide that is removed before the glycosylated protein is transported to the vacuole. In this paper, we show that this signal peptide does not function in mammalian cells: CPY expressed in COS-1 cells is not glycosylated, does not associate with membranes, and retains its signal peptide. In a mammalian cell-free protein-synthesizing system, CPY is not translocated into microsomes. However, if the CPY signal is either mutated to increase its hydrophobicity or replaced with that of influenza virus hemagglutinin, the resulting precursors are efficiently translocated both in vivo and in vitro. The implications of these results for models of signal sequence function are discussed.


2010 ◽  
Vol 427 (3) ◽  
pp. 523-534 ◽  
Author(s):  
Bianca Schrul ◽  
Katja Kapp ◽  
Irmgard Sinning ◽  
Bernhard Dobberstein

SPP (signal peptide peptidase) is an aspartyl intramembrane cleaving protease, which processes a subset of signal peptides, and is linked to the quality control of ER (endoplasmic reticulum) membrane proteins. We analysed SPP interactions with signal peptides and other membrane proteins by co-immunoprecipitation assays. We found that SPP interacts specifically and tightly with a large range of newly synthesized membrane proteins, including signal peptides, preproteins and misfolded membrane proteins, but not with all co-expressed type II membrane proteins. Signal peptides are trapped by the catalytically inactive SPP mutant SPPD/A. Preproteins and misfolded membrane proteins interact with both SPP and the SPPD/A mutant, and are not substrates for SPP-mediated intramembrane proteolysis. Proteins interacting with SPP are found in distinct complexes of different sizes. A signal peptide is mainly trapped in a 200 kDa SPP complex, whereas a preprotein is predominantly found in a 600 kDa SPP complex. A misfolded membrane protein is detected in 200, 400 and 600 kDa SPP complexes. We conclude that SPP not only processes signal peptides, but also collects preproteins and misfolded membrane proteins that are destined for disposal.


Sign in / Sign up

Export Citation Format

Share Document