scholarly journals Human ribosomal G-quadruplexes regulate heme bioavailability

2020 ◽  
Vol 295 (44) ◽  
pp. 14855-14865 ◽  
Author(s):  
Santi Mestre-Fos ◽  
Chieri Ito ◽  
Courtney M. Moore ◽  
Amit R. Reddi ◽  
Loren Dean Williams

The in vitro formation of stable G-quadruplexes (G4s) in human rRNA was recently reported. However, their formation in cells and their cellular roles were not resolved. Here, by taking a chemical biology approach that integrates results from immunofluorescence, G4 ligands, heme-affinity reagents, and a genetically encoded fluorescent heme sensor, we report that human ribosomes can form G4s in vivo that regulate heme bioavailability. Immunofluorescence experiments indicate that the vast majority of extra-nuclear G4s are associated with rRNA. Moreover, titrating human cells with a G4 ligand alters the ability of ribosomes to bind heme and disrupts cellular heme bioavailability as measured by a genetically encoded fluorescent heme sensor. Overall, these results suggest that ribosomes play a role in regulating heme homeostasis.

2020 ◽  
Author(s):  
Santi Mestre-Fos ◽  
Chieri Ito ◽  
Courtney M. Moore ◽  
Amit R. Reddi ◽  
Loren Dean Williams

ABSTRACTThe in vitro formation of stable G-quadruplexes (G4s) in human ribosomal RNA (rRNA) was recently reported. However, their formation in cells and their cellular roles have not been resolved. Here, by taking a chemical biology approach that integrates results from immunofluorescence, G4 ligands, heme affinity reagents, and a genetically encoded fluorescent heme sensor, we report that human ribosomes can form G4s in vivo that regulate heme bioavailability. Immunofluorescence experiments indicate that the vast majority of extra-nuclear G4s are associated with rRNA. Moreover, titrating human cells with a G4 ligand alters the ability of ribosomes to bind heme and disrupts cellular heme bioavailability as measured by a genetically encoded fluorescent heme sensor. Overall, these results suggest ribosomes are central hubs of heme metabolism.


1991 ◽  
Vol 11 (7) ◽  
pp. 3719-3725 ◽  
Author(s):  
L M Morrissey ◽  
K Kirkegaard

A double-stranded RNA (dsRNA)-specific modification activity from Xenopus oocytes and human cells dsRNA modifier) converts adenosine residues present in dsRNA to inosines. The function of the dsRNA modifier is unknown, although it has been suggested that it may be part of the cellular antiviral response. We investigated the relationship between the activity of the dsRNA modifier, viral infection, and the antiviral response in human cells induced by poly(rI)-poly(rC) [poly(I.C)] treatment. We found, unexpectedly, that treatment of HeLa cells with poly(I.C) or other dsRNA molecules resulted in the dramatic inhibition of the dsRNA modifier. Mixing experiments, reconstruction experiments, and pretreatment of extracts with RNases indicated that inhibition of the dsRNA modifier did not result from the continued presence of a soluble inhibitor such as dsRNA) in the in vitro modification reactions. Treatment of cells with cyclohexamide or dactinomycin simultaneously with the poly(I.C) demonstrated that in vivo inhibition of the dsRNA modifier did not require new transcription or translation. The dsRNA modification activity was also substantially inhibited in cells infected with poliovirus and was slightly inhibited in cells infected with adenovirus. The inhibition of the dsRNA modifier during the antiviral state is thus not consistent with an antiviral function, and instead suggests another cellular function for dsRNA modification.


1991 ◽  
Vol 11 (7) ◽  
pp. 3719-3725
Author(s):  
L M Morrissey ◽  
K Kirkegaard

A double-stranded RNA (dsRNA)-specific modification activity from Xenopus oocytes and human cells dsRNA modifier) converts adenosine residues present in dsRNA to inosines. The function of the dsRNA modifier is unknown, although it has been suggested that it may be part of the cellular antiviral response. We investigated the relationship between the activity of the dsRNA modifier, viral infection, and the antiviral response in human cells induced by poly(rI)-poly(rC) [poly(I.C)] treatment. We found, unexpectedly, that treatment of HeLa cells with poly(I.C) or other dsRNA molecules resulted in the dramatic inhibition of the dsRNA modifier. Mixing experiments, reconstruction experiments, and pretreatment of extracts with RNases indicated that inhibition of the dsRNA modifier did not result from the continued presence of a soluble inhibitor such as dsRNA) in the in vitro modification reactions. Treatment of cells with cyclohexamide or dactinomycin simultaneously with the poly(I.C) demonstrated that in vivo inhibition of the dsRNA modifier did not require new transcription or translation. The dsRNA modification activity was also substantially inhibited in cells infected with poliovirus and was slightly inhibited in cells infected with adenovirus. The inhibition of the dsRNA modifier during the antiviral state is thus not consistent with an antiviral function, and instead suggests another cellular function for dsRNA modification.


1999 ◽  
Vol 111 (3) ◽  
pp. 198-205 ◽  
Author(s):  
Gerald G. Krueger ◽  
Jeffery R. Morgan ◽  
Marta J. Petersen
Keyword(s):  

1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Chenguang Ding ◽  
Xiaoming Ding ◽  
Jin Zheng ◽  
Bo Wang ◽  
Yang Li ◽  
...  

Abstract Renal tubular cell death is the key factor of the pathogenesis of ischemia/reperfusion (I/R) kidney injury. Ferroptosis is a type of regulated cell death (RCD) found in various diseases. However, the underlying molecular mechanisms related to ferroptosis in renal I/R injury remain unclear. In the present study, we investigated the regulatory role of microRNAs on ferroptosis in I/R-induced renal injury. We established the I/R-induced renal injury model in rats, and H/R induced HK-2 cells injury in vitro. CCK-8 was used to measure cell viability. Fe2+ and ROS levels were assayed to evaluate the activation of ferroptosis. We performed RNA sequencing to profile the miRNAs expression in H/R-induced injury and ferroptosis. Western blot analysis was used to detect the protein expression. qRT-PCR was used to detect the mRNA and miRNA levels in cells and tissues. We further used luciferase reporter assay to verify the direct targeting effect of miRNA. We found that ischemia/reperfusion-induced ferroptosis in rat’s kidney. We identified that miR-182-5p and miR-378a-3p were upregulated in the ferroptosis and H/R-induced injury, and correlates reversely with glutathione peroxidases 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression in renal I/R injury tissues, respectively. In vitro studies showed that miR-182-5p and miR-378a-3p induced ferroptosis in cells. We further found that miR-182-5p and miR-378a-3p regulated the expression of GPX4 and SLC7A11 negatively by directly binding to the 3′UTR of GPX4 and SLC7A11 mRNA. In vivo study showed that silencing miR-182-5p and miR-378a-3p alleviated the I/R-induced renal injury in rats. In conclusion, we demonstrated that I/R induced upregulation of miR-182-5p and miR-378a-3p, leading to activation of ferroptosis in renal injury through downregulation of GPX4 and SLC7A11.


2007 ◽  
Vol 18 (3) ◽  
pp. 827-838 ◽  
Author(s):  
Céline Revenu ◽  
Matthieu Courtois ◽  
Alphée Michelot ◽  
Cécile Sykes ◽  
Daniel Louvard ◽  
...  

Villin, an actin-binding protein associated with the actin bundles that support microvilli, bundles, caps, nucleates, and severs actin in a calcium-dependant manner in vitro. We hypothesized that the severing activity of villin is responsible for its reported role in enhancing cell plasticity and motility. To test this hypothesis, we chose a loss of function strategy and introduced mutations in villin based on sequence comparison with CapG. By pyrene-actin assays, we demonstrate that this mutant has a strongly reduced severing activity, whereas nucleation and capping remain unaffected. The bundling activity and the morphogenic effects of villin in cells are also preserved in this mutant. We thus succeeded in dissociating the severing from the three other activities of villin. The contribution of villin severing to actin dynamics is analyzed in vivo through the actin-based movement of the intracellular bacteria Shigella flexneri in cells expressing villin and its severing variant. The severing mutations abolish the gain of velocity induced by villin. To further analyze this effect, we reconstituted an in vitro actin-based bead movement in which the usual capping protein is replaced by either the wild type or the severing mutant of villin. Confirming the in vivo results, villin-severing activity enhances the velocity of beads by more than two-fold and reduces the density of actin in the comets. We propose a model in which, by severing actin filaments and capping their barbed ends, villin increases the concentration of actin monomers available for polymerization, a mechanism that might be paralleled in vivo when an enterocyte undergoes an epithelio-mesenchymal transition.


1999 ◽  
Vol 19 (9) ◽  
pp. 6076-6084 ◽  
Author(s):  
Graeme C. M. Smith ◽  
Fabrizio d’adda di Fagagna ◽  
Nicholas D. Lakin ◽  
Stephen P. Jackson

ABSTRACT The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance—the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.


Sign in / Sign up

Export Citation Format

Share Document