In vitro saponin production in plant cell and tissue cultures.

2010 ◽  
pp. 115-137
Author(s):  
M Archana ◽  
A. K. Mathur
Keyword(s):  
1978 ◽  
Vol 24 (2) ◽  
pp. 143-148 ◽  
Author(s):  
J. J. Child ◽  
W. G. W. Kurz

Eleven different plant cell tissue cultures of both legume and non-legume origin have been grown in direct association, and in separate but close proximal association with both Spirillum lipoferum and Rhizobium sp. 32H1. Basic similarities were found in the nutritional requirement for the induction of nitrogenase activity (C2H2) in both organisms. In the absence of plant cell cultures both organisms need to be provided with a pentose sugar and a tricarboxylic acid to induce high levels of nitrogen-fixing activity. Plant cell callus tissue appears only capable of supplying the tricarboxylic acids needed but not the sugar component. The plant tissue, however, seems able to activate certain carbohydrates, which in themselves are incapable of substituting for the pentose additive.


2017 ◽  
Vol 8 (2) ◽  
pp. 11-17
Author(s):  
Marta Jaskulak ◽  
Anna Grobelak

The main aim of this review is to assess the advantages and disadvantages of use of in vitro plant cell and organ cultures as useful research tools in process of phytoremediation. Plant tissue cultures including cell suspensions, callus and hairy roots are frequently used in the phytoremediation research, mostly as a model plant systems. One of the most important advantages of using in vitro cultures is the ability to examine the metabolic capabilities of plant cells as well as their capacity for toxicity tolerance in controlled conditions without any interference from microorganisms and processes occurring naturally in soils. The results obtained from plant cell or tissue cultures can be used to predict the responses of plants to environmental stressors and also to mass produce stress induced proteins and other metabolites. The aim of this review is to present possible applications for in vitro cultures in phytoremediation studies.


Author(s):  
Gunnel Karlsson ◽  
Jan-Olov Bovin ◽  
Michael Bosma

RuBisCO (D-ribulose-l,5-biphosphate carboxylase/oxygenase) is the most aboundant enzyme in the plant cell and it catalyses the key carboxylation reaction of photosynthetic carbon fixation, but also the competing oxygenase reaction of photorespiation. In vitro crystallized RuBisCO has been studied earlier but this investigation concerns in vivo existance of RuBisCO crystals in anthers and leaves ofsugarbeets. For the identification of in vivo protein crystals it is important to be able to determinethe unit cell of cytochemically identified crystals in the same image. In order to obtain the best combination of optimal contrast and resolution we have studied different staining and electron accelerating voltages. It is known that embedding and sectioning can cause deformation and obscure the unit cell parameters.


2006 ◽  
Vol 54 (3) ◽  
pp. 351-358 ◽  
Author(s):  
P. Pepó

Plant regeneration via tissue culture is becoming increasingly more common in monocots such as maize (Zea mays L.). Pollen (gametophytic) selection for resistance to aflatoxin in maize can greatly facilitate recurrent selection and the screening of germplasm for resistance at much less cost and in a shorter time than field testing. In vivo and in vitro techniques have been integrated in maize breeding programmes to obtain desirable agronomic attributes, enhance the genes responsible for them and speed up the breeding process. The efficiency of anther and tissue cultures in maize and wheat has reached the stage where they can be used in breeding programmes to some extent and many new cultivars produced by genetic manipulation have now reached the market.


2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


1970 ◽  
Vol 67 (4) ◽  
pp. 1814-1817 ◽  
Author(s):  
D. L. Rayle ◽  
P. M. Haughton ◽  
R. Cleland

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3262
Author(s):  
Wojciech J. Szypuła ◽  
Beata Wileńska ◽  
Aleksandra Misicka ◽  
Agnieszka Pietrosiuk

This is the first report of an efficient and effective procedure to optimize the biosynthesis of huperzine A (HupA) and huperzine B (HupB) in vitro from Huperzia selago gametophytes. Axenic tissue cultures were established using spores collected from the sporophytes growing in the wild. The prothalia were obtained after 7–18 months. Approximately 90 up to 100% of the gametophytes were viable and grew rapidly after each transfer on to a fresh medium every 3 months. The best biomass growth index for prothallus calculated on a fresh (FW) and dry weight (DW) basis, at 24 weeks of culture, was 2500% (FW) and 2200% (DW), respectively. The huperzine A content in the gametophytes was very high and ranged from 0.74 mg/g to 4.73 mg/g DW. The highest yield HupA biosynthesis at >4 mg/g DW was observed on W/S medium without growth regulators at 8 to 24 weeks of culture. The highest HupB content ranged from 0.10 mg/g to 0.52 mg/g DW and was obtained on the same medium. The results demonstrate the superiority of H. selago gametophyte cultures, with the level of HupA biosynthesis approximately 42% higher compared to sporophyte cultures and 35-fold higher than when the alkaloid was isolated from H. serrata, its current source for the pharmaceutical industry. Moreover, the biosynthesis of HupB was several-fold more efficient than in H. selago sporophytes growing in the wild. HPLC-HR-MS analyses of the extracts identified eight new alkaloids previously unreported in H. selago: deacetylfawcettine, fawcettimine, 16-hydroxyhuperzine B, deacetyllycoclavine, annopodine, lycopecurine, des-N-methylfastigiatine and flabelline.


Sign in / Sign up

Export Citation Format

Share Document