scholarly journals Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa

2003 ◽  
Vol 89 (5) ◽  
pp. 581-587 ◽  
Author(s):  
Francesco Guglielmi ◽  
Cristina Luceri ◽  
Lisa Giovannelli ◽  
Piero Dolara ◽  
Maura Lodovici

The effect of 4-coumaric and 3,4-dihydroxybenzoic (protocatechuic) acid on the basal oxidative DNA damage of rat colonic mucosa in vivo was studied, relative to vitamin E. F344 rats were treated with 4-coumaric or protocatechuic acid mixed in the diet (25 or 50 mg/kg for 2 weeks). It was observed that 4-coumaric acid (50 mg/kg) significantly decreased the basal level of the oxidative damage assessed as 8-OH-2′-deoxyguanosine levels in DNA and by the comet assay. Moreover, it was found that vitamin E (10 mg/kg) had no effect on colonic mucosa oxidation damage, whereas at a higher dose (55 mg/kg) it actually enhanced oxidative stress. The effect of 4-coumaric acid (50 mg/kg) on the expression of some glutathione-related enzymes (glutathione-S-transferase (GST)-P, GST-M2, GST-M1, γ-glutamylcysteine synthetase, glutathione peroxidase (GSPX)1 and GSPX4) was also investigated at the level of the colonic mucosa. Only the expression of GST-M2 was significantly induced by 4-coumaric acid, while protocatechuic acid was inactive. The data suggest that 4-coumaric acid acts as an antioxidant in the colonic mucosa in vivo.

1999 ◽  
pp. 283-294
Author(s):  
J. Lunec ◽  
I. D. Podmore ◽  
H. R. Griffiths ◽  
K. E. Herbert ◽  
N. Mistry ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1502
Author(s):  
Fátima Brandão ◽  
Carla Costa ◽  
Maria João Bessa ◽  
Elise Dumortier ◽  
Florence Debacq-Chainiaux ◽  
...  

Several reports on amorphous silica nanomaterial (aSiO2 NM) toxicity have been questioning their safety. Herein, we investigated the in vivo pulmonary toxicity of four variants of aSiO2 NM: SiO2_15_Unmod, SiO2_15_Amino, SiO2_7 and SiO2_40. We focused on alterations in lung DNA and protein integrity, and gene expression following single intratracheal instillation in rats. Additionally, a short-term inhalation study (STIS) was carried out for SiO2_7, using TiO2_NM105 as a benchmark NM. In the instillation study, a significant but slight increase in oxidative DNA damage in rats exposed to the highest instilled dose (0.36 mg/rat) of SiO2_15_Amino was observed in the recovery (R) group. Exposure to SiO2_7 or SiO2_40 markedly increased oxidative DNA lesions in rat lung cells of the exposure (E) group at every tested dose. This damage seems to be repaired, since no changes compared to controls were observed in the R groups. In STIS, a significant increase in DNA strand breaks of the lung cells exposed to 0.5 mg/m3 of SiO2_7 or 50 mg/m3 of TiO2_NM105 was observed in both groups. The detected gene expression changes suggest that oxidative stress and/or inflammation pathways are likely implicated in the induction of (oxidative) DNA damage. Overall, all tested aSiO2 NM were not associated with marked in vivo toxicity following instillation or STIS. The genotoxicity findings for SiO2_7 from instillation and STIS are concordant; however, changes in STIS animals were more permanent/difficult to revert.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Marion Hofmann Bowman ◽  
Jeannine Wilk ◽  
Gene Kim ◽  
Yanmin Zhang ◽  
Jalees Rehman ◽  
...  

S100A12 is a small calcium binding protein that is a signal transduction ligand of the receptor for advance glycation endproducts (RAGE). S100A12, like RAGE, is expressed in the vessel wall of atherosclerotic vasculature, particularly in smooth muscle cells (SMC). While RAGE has been extensively implicated in inflammatory states such as atherosclerosis, the role of S100A12 is less clear. We tested the hypothesis that expression of human S100A12 directly exacerbates vascular inflammation. Several lines of Bl6/J transgenic mice (tg) expressing human S100A12 in SMC under control of the SM22a promoter were generated. Primary aortic SMC from tg and wild type (wt) littermates were isolated and analyzed for (i) proliferation using MTS/Formazan Assay and BrdU incorporation, (ii) oxidative stress using using flow cytometry with MitoSOX antibody, oxidative DNA damage using immunofluorescence microscopy with anti-8-oxo-dG antibody, and NF-kB activation measured by EMSA and (iii) cytokine expression measured by IL-6 ELISA. Furthermore, the aortas from tg and wt mice were examined. Results: Tg but not wt SMC expressed S100A12 protein. Tg SMC had a significant 1.9 to 2.7 fold increase in conversion of MTS into Formazan at 24–96 hours likely reflective of increased metabolic activity since BrdU incorporation into DNA was less in tg compared to wt SMC (4% vs 21% positive BrdU nuclei, p <0.05). Tg SMC showed significantly higher levels of mitochondrial generated ROS, nuclear staining for oxidative DNA damage which was not detected in the nuclei of wt SMC’s, and a 2.5 fold increase in NFkB activity. IL-6 production at baseline was higher in tg SMC’s (615 vs 213 pg/ml, p< 0.05) and increased dramatically after LPS treatment (10 ng/ml) in tg SMC’s (2130 vs 415 pg/ml). Histologic examination of the thoracic aorta at 10 weeks of age revealed increased collagen deposition in the aortic media with fragmentation and disarray of elastic fibers. In vivo ultrasound revealed a progressive dilation of the aortic arch from age 10 weeks to 16 weeks of age (1.27 to 1.60 mm, p<0.05) in tg but not in wt littermate mice (1.30 to 1.33 mm, p=0.1). These data reveal the novel finding that targeted expression of human S100A12 in SMC modulates oxidative stress, inflammation and vascular remodeling.


DNA Repair ◽  
2012 ◽  
Vol 11 (11) ◽  
pp. 857-863 ◽  
Author(s):  
Senyene E. Hunter ◽  
Margaret A. Gustafson ◽  
Kathleen M. Margillo ◽  
Sean A. Lee ◽  
Ian T. Ryde ◽  
...  

2010 ◽  
Vol 56 (4) ◽  
pp. 1037-1046 ◽  
Author(s):  
Caroline Caltabiano ◽  
Felipe Rodrigues Máximo ◽  
Ana Paula Pimentel Spadari ◽  
Daniel Duarte da Conceição Miranda ◽  
Marcia Milena Pivatto Serra ◽  
...  

1999 ◽  
Vol 836 (1-2) ◽  
pp. 70-78 ◽  
Author(s):  
Moo Ho Won ◽  
Tae-Cheon Kang ◽  
Gye-Sun Jeon ◽  
Jae-Chul Lee ◽  
Dae-Yong Kim ◽  
...  

2001 ◽  
Vol 15 (8) ◽  
pp. 1425-1427 ◽  
Author(s):  
Marco Tomasetti ◽  
Renata Alleva ◽  
Andrew R. Collins

Sign in / Sign up

Export Citation Format

Share Document