Quantification of three-dimensional skin displacement artefacts on the equine tibia and third metatarsus

2004 ◽  
Vol 1 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Joel L Lanovaz ◽  
Siriporn Khumsap ◽  
Hilary M Clayton

AbstractRoutine study of three-dimensional (3D) tarsal kinematics is hampered by errors due to the displacement of skin surface-tracking markers relative to the underlying bones. Reliable kinematics can be obtained with bone-fixed markers, but an accurate, non-invasive method would have more applications. Simultaneous kinematic data from skin-based and bone-fixed markers attached to the tibia and third metatarsus were collected from three trotting subjects. The motion of the skin-based markers was extracted relative to the underlying bone motion tracked using the bone-fixed markers. The 3D skin displacement patterns for the skin-based markers were parameterized using a truncated Fourier series model. These displacements were expressed in terms of the local coordinate system for each bone. Skin displacement artefacts were observed in all three axes of each bone segment, with the largest displacements occurring at the proximal tibia. The mean skin displacement amplitudes in the tibia were 6.7%, 3.2% and 10.5% of segment length, and for the third metatarsus were 2.6%, 1.4% and 3.8% of segment length, for the craniocaudal, mediolateral and longitudinal segment axes, respectively. Skin displacement patterns could be expressed concisely using the Fourier series model. Displacements were also consistent between subjects, which should allow them to be used as a basis for developing a correction procedure for 3D tarsal joint kinematics.

2017 ◽  
Vol 8 (16) ◽  
pp. 103 ◽  
Author(s):  
Carmen Díaz-Marín ◽  
Elvira Aura-Castro

This article describes the restoration of a glass bowl from the 16th-17thcentury by creating its three-dimensional (3D)model. The final purpose is to work with this model in order to avoid damaging situations that are associated with the manipulation of fragile objects. The gap areas, those corresponding to the missing fragments not found in the excavation, were carried out by constructing digital implants. A restricted area of the 3D model has been duplicated in order to accommodate it to confined intervals of the gap. The final implants were printed with acrylonitrile butadiene styrene (ABS) filament. These implants replace the lost areas and give stability back to the item by recovering the original morphology. The result can be compared with the outcome obtained by a traditional process, but differs due to the fact that requires minimum manipulation of the item, so it can contribute to preserve and safeguard the restored object. This is a non-invasive method which is offered as an alternative treatment, where the archaeological object is replaced by its virtual model in the steps of the process after 3D data acquisition. Significant differences have not been found in the 3D printing results obtained with the two types of filaments tested (white and clear).


2008 ◽  
Vol 17 (8) ◽  
pp. 688-692 ◽  
Author(s):  
Eriko Kawai ◽  
Jotaro Nakanishi ◽  
Noriyuki Kumazawa ◽  
Koichiro Ozawa ◽  
Mitsuhiro Denda

Author(s):  
Hussain Z. Tameem ◽  
Bhavin V. Mehta

This investigation uses a multi disciplinary approach to standardize a non-invasive method for measuring human vocal tract morphology. A series of Magnetic Resonance Imaging (MRI) scans are performed on the subject’s vocal tract and a detailed three-dimensional model is created through image processing and computer modeling. This information is compared with the vocal tract measurements obtained with Eccovision Acoustic Pharyngometer, in order to establish the accuracy of the instrument. The model is then used to develop other specific models through parametric modeling. This method is useful in creating solid models with limited geometrical information and helps researchers study the human vocal tract changes due to aging and degenerative diseases.


Author(s):  
S.U. Maksyukov ◽  
D.V. Yogina ◽  
D.S. Maksyukov

The aim of the study was to evaluate the effectiveness of a non-invasive method of treating caries at the stage of a white chalky spot with the Infiltration Concept (Icon) technology. Materials and methods: the clinical and laboratory study included 5 teeth with caries in the white spot stage, removed according to orthodontic indications. The study included scanning in an X-ray computer microtomograph of selected samples of teeth with caries in the white spot stage before and after treatment of the caries area according to Icon technology. For each sample, 1601 X-ray projections were obtained, which were then reconstructed using the XRM Reconstructor software. The comparison of the mineralization density of the samples was carried out by calibrating the obtained images, reconstructing three-dimensional models of tooth samples and constructing maps of the mineralization fee. Results and conclusions. Data on the mineralization density before and after treatment according to Icon technology were obtained in the following areas of the studied teeth: caries in the white spot stage; dentin bordering on caries (the area touches the dentinoemal border as close as possible to the caries area); the area of healthy enamel on the opposite side of the tooth; dentin bordering on healthy enamel (near the dentinoemal border and as close as possible to the healthy enamel area). A comparison of the results obtained does not allow us to conclude about the effectiveness of treatment according to the Icon technology. Moreover, the mineralization density of the studied areas significantly decreased after the treatment.


2021 ◽  
Author(s):  
Christian Damsgaard ◽  
Henrik Lauridsen

The eye's retina is one of the most energy-demanding tissues in the body and thus requires high rates of oxygen delivery from a rich blood supply. The capillary lamina of the choroid lines the outer surface of the retina and is the dominating source of oxygen in most vertebrates, but this vascular bed is challenging to image with traditional optical techniques due to its position behind the highly light-absorbing retina. Here we describe a high-frequency ultrasound technique with flow-enhancement to image deep vascular beds (0.5 - 3 cm) of the eye with a high spatiotemporal resolution. This non-invasive method works well in species with nucleated red blood cells (non-mammalian and fetal animal models), and it generates non-invasive three-dimensional angiographies without the use of contrast agents that is independent of blood flow angles and with a higher sensitivity than Doppler based ultrasound imaging techniques.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3431
Author(s):  
Pedro Jesús Rodríguez de Rivera ◽  
Miriam Rodríguez de Rivera ◽  
Fabiola Socorro ◽  
Manuel Rodríguez de Rivera ◽  
Gustavo Marrero Callicó

A calorimetric sensor has been designed to measure the heat flow dissipated by a 2 × 2 cm2 skin surface. In this work, a non-invasive method is proposed to determine the heat capacity and thermal conductance of the area of skin where the measurement is made. The method consists of programming a linear variation of the temperature of the sensor thermostat during its application to the skin. The sensor is modelled as a two-inputs and two-outputs system. The inputs are (1) the power dissipated by the skin and transmitted by conduction to the sensor, and (2) the power dissipated in the sensor thermostat to maintain the programmed temperature. The outputs are (1) the calorimetric signal and (2) the thermostat temperature. The proposed method consists of a sensor modelling that allows the heat capacity of the element where dissipation takes place (the skin) to be identified, and the transfer functions (TF) that link the inputs and outputs are constructed from its value. These TFs allow the determination of the heat flow dissipated by the surface of the human body as a function of the temperature of the sensor thermostat. Furthermore, as this variation in heat flow is linear, we define and determine an equivalent thermal resistance of the skin in the measured area. The method is validated with a simulation and with experimental measurements on the surface of the human body.


2011 ◽  
Vol 21 (4) ◽  
pp. 599-605 ◽  
Author(s):  
P. Svedmark ◽  
T. Tullberg ◽  
M. E. Noz ◽  
G. Q. Maguire ◽  
M. P. Zeleznik ◽  
...  

2001 ◽  
Vol 58 (1) ◽  
pp. 1-14 ◽  
Author(s):  
D. MASSON ◽  
S. M. GLIDEWELL ◽  
M. MÖLLER ◽  
R. R. MILL ◽  
B. WILLIAMSON ◽  
...  

Many taxonomic distinctions are made or refined on the basis of herbarium material that is either dried or preserved in spirit medium. Hitherto, examination of internal structure has only been possible by the destructive sectioning of the preserved material. In this paper, the use of nuclear magnetic resonance (NMR) imaging for the non-destructive, non-invasive, complete three-dimensional structural examination of herbarium material is demonstrated for the first time. The experimental materials were the fruiting structures of two species of Southern Hemisphere Podocarpaceae: Acmopyle pancheri and Podocarpus nivalis. Material dried in accordance with standard herbarium techniques was used, as well as material preserved in spirit and freshly gathered fruits. The dried material was subsequently rehydrated using standard techniques, and protocols established for the specimens. Appropriate selection of NMR imaging parameters allowed a variety of anatomical features to be highlighted on a single specimen. Fresh specimens from living material gave the best NMR signals. Dry specimens gave no signal except from the lipid in the seed, but when rehydrated the images yielded almost as much information about internal structure as did a fresh specimen of the same taxon. Thus, NMR imaging has great potential value as a non-invasive method for obtaining details of the internal structure of fruits and seeds and is particularly useful when, as in the case of Acmopyle, the sclerotesta of the seed is too lignified for sectioning by conventional methods.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
T. Rodrigues ◽  
I. Saavedra

Background:The more recent advances in the field of Neurosciences include the study of abnormal pathophysiological findings in patients suffering from Psychiatric disorders. Several new brain imaging technologies are conveying numerous data concerning structural and functional abnormalities in such patients.Aims:To provide an overview of the role of quantitative Electroencephalography (qEEG) in Psychiatry.Methods:Review of the literature.Results:Among the various imaging studies, the application of three-dimensional qEEG may be the most practical and economic alternative. The qEEG consists in the statistical analysis of the EEG parameters, with computer-treated data. It is a portable, radiation-free, non-invasive method that measures excitatory and inhibitory cortical neuronal activity directly.Conclusion:The latest literature regarding the potential role of the qEEG in Psychiatry debates its applicability in clinical settings. Several authors have been trying to evaluate its usefulness in clinical diagnosis and prediction of response to medication. We review the possible recommendations for the use of this test and the controversies surrounding them.


Sign in / Sign up

Export Citation Format

Share Document