scholarly journals Meloidogyne incognita (root-knot nematode).

Author(s):  
Jonathan D. Eisenback

Abstract The root knot nematode species, M. incognita, is the most widespread and probably the most serious plant parasitic nematode pest of tropical and subtropical regions throughout the world (Sasser, 1979). It occurs as a pest on a very wide range of crops. Most estimates of yield loss come from the use of nematicides and it should be noted that these can possibly cause other beneficial growth effects.

2021 ◽  
Author(s):  
Jonathan D. Eisenback

Abstract Introduction: The root knot nematode species, M. incognita, is the most widespread and probably the most serious plant parasitic nematode pest of tropical and subtropical regions throughout the world (Sasser, 1979). It occurs as a pest on a very wide range of crops. Most estimates of yield loss come from the use of nematicides and it should be noted that these can possibly cause other beneficial growth effects.


Author(s):  
Anil Baniya ◽  
Soumi Joseph ◽  
Larry Duncan ◽  
William Crow ◽  
Tesfamariam Mengistu

AbstractSex determination is a key developmental event in all organisms. The pathway that regulates sexual fate has been well characterized at the molecular level in the model free-living nematode Caenorhabditis elegans. This study aims to gain a preliminary understanding of sex-determining pathways in a plant-parasitic nematode Meloidogyne incognita, and the extent to which the roles of the sex determination genes are conserved in a hermaphrodite species, C. elegans, and plant-parasitic nematode species, M. incognita. In this study, we targeted two sex-determining orthologues, sdc-1 and tra-1 from M. incognita using RNA interference (RNAi). RNAi was performed by soaking second-stage juveniles of M. incognita in a solution containing dsRNA of either Mi-tra-1or Mi-sdc-1 or both. To determine the effect of RNAi of the target genes, the juveniles treated with the dsRNA were inoculated onto a susceptible cultivar of cowpea grown in a nutrient pouch at 28 °C for 5 weeks. The development of the nematodes was analyzed at different time points during the growth period and compared to untreated controls. Our results showed that neither Mi-sdc-1 nor Mi-tra-1 have a significant role in regulating sexual fate in M. incognita. However, the silencing of Mi-sdc-1 significantly delayed maturity to adult females but did not affect egg production in mature females. In contrast, the downregulation of Mi-tra-1 transcript resulted in a significant reduction in egg production in both single and combinatorial RNAi-treated nematodes. Our results indicate that M. incognita may have adopted a divergent function for Mi-sdc-1 and Mi-tra-1distinct from Caenorhabditis spp. However, Mi-tra-1 might have an essential role in female fecundity in M. incognita and is a promising dsRNA target for root-knot nematode (RKN) management using host-delivered RNAi.


2013 ◽  
Vol 16 (7) ◽  
pp. 1515-1530 ◽  
Author(s):  
Sunil K. Singh ◽  
Dean R. Paini ◽  
Gavin J. Ash ◽  
Mike Hodda

Nematology ◽  
2002 ◽  
Vol 4 (6) ◽  
pp. 661-669 ◽  
Author(s):  
Richard Plowright ◽  
Daniel Coyne

AbstractIn temperate climates, densities of plant-parasitic nematodes at or shortly before sowing are a useful predictor of their damage potential. Re-examination of data from nematode communities on upland rice in Côte d'Ivoire showed that interpretation of nematode pest potentials and the damage caused by either individual species, or by the community as a whole, is less simple. The numerical proportion of individual nematode species within a plant-parasitic nematode community, comprising Heterodera sacchari, Pratylenchus zeae , Meloidogyne incognita, Helicotylenchus dihystera, Mesocriconema tescorum and Xiphinema spp., changed with duration of the cropping cycle. The relative importance to the crop of the different species changed with time, and with development of the community structure over the course of the season. Analysis suggested that for H.sacchari, the mid-season population densities were most highly correlated with crop damage (yield loss) and therefore its damage potential for that particular season. The pest potential of other known rice pest species, such as M. incognita and P.zeae, was likely indicated earlier in the season, but the population increase of other nematode species in the community, particularly H. sacchari, compounded the interpretation of the data for other species. The use of single linear regression to assess the importance of individual nematode species conflicted with results of analyses using multiple stepwise regression, while use of cluster analysis permitted the identification of species groups at early and late stages in the cropping season.


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 982-993 ◽  
Author(s):  
Yongsan Zeng ◽  
Weimin Ye ◽  
James Kerns ◽  
Lane Tredway ◽  
Samuel Martin ◽  
...  

The near-full-length 18S ribosomal DNA (rDNA) gene and internal transcribed spacer 1 region were amplified and sequenced from 52 nematode populations belonging to 28 representative species in 13 families recovered from turfgrasses in North Carolina (38 populations) and South Carolina (14 populations). This study also included 13 nematode populations from eight other plant hosts from North Carolina for comparison. Nematodes were molecularly characterized and the phylogenetic relationships were explored based on 18S rDNA sequences. Phylogenetic analysis using Bayesian inference was performed using five groups of the plant-parasitic nematode populations Tylenchids, Criconematids, Longidorids, Xiphinematids, and Trichodorids. The 65 nematode populations were clustered correspondingly within appropriate positions of 13 families, including Belonolaimidae, Caloosiidae, Criconematidae, Dolichodoridae, Hemicycliophoridae, Hoplolaimidae, Heteroderidae, Longidoridae, Meloidogynidae, Paratylenchidae, Pratylenchidae, Telotylenchidae, and Trichodoridae. This study confirms previous morphological-based identification of the plant-parasitic nematode species found in turfgrasses and provides a framework for future studies of plant-parasitic nematodes associated with turfgrasses based upon DNA sequences and phylogenetic relationships.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 471-475 ◽  
Author(s):  
Enrique E. Pérez ◽  
Edwin E. Lewis

A 2-year experiment was conducted to test suppression of plant-parasitic nematodes on English boxwood using entomopathogenic nematodes and 3.5% thyme oil formulated as Promax. Treatments were Steinernema riobrave formulated as BioVector and S. feltiae formulated as Nemasys, both applied at a rate of 2.5 billion infective juveniles/ha, thyme oil at rate of 9.3 liters/ha, and nontreated control. In the 2001 season, treatment with S. feltiae reduced (P ≤ 0.05) the population growth of Tylenchorhynchus sp. 7 days after treatment and Hoplolaimus sp. 30 and 60 days after treatment. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode species at all sampling dates, with the exception of Mesocriconema sp. 30 days after treatment and Tylenchorhynchus sp. and Rotylenchus buxophilus 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth of all plant-parasitic nematode genera at all sampling dates except Tylenchorhynchus sp. and R. buxophilus 60 days after treatment. In the 2002 season, treatment with S. feltiae had no effect on nematode population growth. Treatment with S. riobrave reduced (P ≤ 0.05) the population growth of R. buxophilus 7 days after treatment, and all plant-parasitic nematodes 30 and 60 days after treatment except Hoplolaimus sp. 30 days after treatment and Mesocriconema sp. 60 days after treatment. Treatment with thyme oil reduced (P ≤ 0.05) the population growth at all sampling dates of plant-parasitic nematodes except Mesocriconema sp. 60 days after treatment.


2019 ◽  
Vol 18 (4) ◽  
pp. 62-69
Author(s):  
Phong V. Nguyen

Effectors have been identified to play a very important role in the parasitism of plant-parasitic nematode. To cope with this type of pathogen, many approaches of silencing genes encoding for effectors have been studied and promise to be an effective tool to create plant varieties resistant to plant-parasitic nematodes. In this study, the Minc16281 gene encoding a pioneer effector with unknown function was determined and cloned from a Meloidogyne incognita population isolated from soybean field (ID: MH315945.1). The nucleotide sequence of this gene showed 97% identity to its homolog in GenBank (ID: JK287445.1) used as the control strain in our research. To generate host-induced gene silencing constructs which can potentially silence the expression of Minc16281 gene, two artificial microRNAs were synthesized based on the miR319a structure of Arabidopsis thaliana and inserted into an expression vector in soybean. These microRNAs can be introduced into soybean to investigate the function of Minc16281 on parasitism of root-knot nematode.


Sign in / Sign up

Export Citation Format

Share Document