Radial variation of anatomical features, physicomechanical properties and chemical constituents and their potential influence on the wood quality of 45-year-oldEucalyptus propinqua

2014 ◽  
Vol 77 (2) ◽  
pp. 78-85 ◽  
Author(s):  
E.L. Longui ◽  
D. Romeiro ◽  
P. Pfleger ◽  
I.L. Lima ◽  
F.G. Silva ◽  
...  
CERNE ◽  
2017 ◽  
Vol 23 (3) ◽  
pp. 291-297
Author(s):  
Walter Torezani Neto Boschetti ◽  
Juarez Benigno Paes ◽  
Graziela Baptista Vidaurre ◽  
Marina Donária Chaves Arantes ◽  
João Gabriel Missia da Silva

ABSTRACT This study aims to evaluate the quality of normal, tension and opposite wood of eucalyptus trees lengthwise, in straight and inclined stems, affected by wind action. It also aims to explain the pulping parameters resultant from the quality of the wood. The trees were grouped into four tilt ranges, ranging from 0 to 50º, and the basic density, chemical composition of the wood, and performance in kraft pulping were assessed. Normal and tension wood had similar basic densities; while for opposite wood, the density was lower, being responsible for a decrease in reaction wood density. The chemical composition of the wood was influenced by the presence of reaction wood in the stem. Tension and opposite wood showed lower levels of extractives and lignin and higher holocellulose content when compared to normal wood, with favorable wood quality for pulping. The increase in holocellulose content and the reduction of lignin and extractives content contributed positively to a more delignified pulp and reduction of the Kappa number. However, after cooking the reaction wood under the same conditions as those of normal wood, reaction wood pulping tends to have a lower screen yields. Due to differences in basic density and chemical constituents between opposite and normal wood, it is recommended not to designate the opposite wood as normal wood.


2021 ◽  
Vol 10 (16) ◽  
pp. e395101624035
Author(s):  
Eduardo Luiz Longui ◽  
Guilherme Henrique Custódio ◽  
Erick Phelipe Amorim ◽  
Francides Gomes da Silva Júnior ◽  
Shinitiro Oda ◽  
...  

We compared the anatomy, density, chemical contents, and bioenergy values of Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla wood originating from diploids, triploids and tetraploids. We hypothesize that Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla with different degrees of ploidy have variations as a result of different sets of chromosomes producing different phenotypic expressions and chemical constituents, such as variation in cell size and frequency, which would directly influence wood quality. Twenty-year-old trees were cut, eight for each ploidy: diploids and tetraploids are E. grandis; triploids are E. grandis x E. urophylla. We use standardized techniques. Our hypothesis was confirmed. Triploid and tetraploid trees presented wider trunks, taller trees with longer stems and wider crowns compared to diploid trees. Wood density showed significant radial variation only in diploids, while triploid and tetraploid trees were more homogeneous. In polyploid trees, the anatomical features did not clearly present a radial pattern. Triploid and tetraploid trees presented higher density wood than diploid trees. The chemical constituents varied from pith to bark in the three ploidies, but no differences between ploidies were found. For energy generation purposes, diploid and triploid trees are more desirable than tetraploid trees.


2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Nurul Chaerani ◽  
DEDE J SUDRAJAT ◽  
ISKANDAR Z SIREGAR ◽  
ULFAH J SIREGAR

Abstract. Chaerani N, Sudrajat DJ, Siregar IZ, Siregar UJ. 2019. Growth performance and wood quality of white jabon (Neolamarckia cadamba) progeny testing at Parung Panjang, Bogor, Indonesia. Biodiversitas 20: 2295-2301. The aim of this study was to evaluate the genetic parameters of growth and wood quality in white jabon progeny test at 54 months old in Parung Panjang, Bogor. The 105 half-sib families obtained from 12 provenances were evaluated in a randomized complete block design with five replications. Wood quality was assessed both in a non-destructive way using a pilodyn and by destructive method using wood sample taker. Results indicated that the mean value ranged from 5.10 to 10.15 m for height, 6.67 to 15.30 cm for diameter, 2.30 to 3.62 cm for pilodyn penetration, 0.66 to 0.82 g/cm3 for wood density, 0.33 to 0.50 for specific gravity, and 66 to 111 % for moisture content, respectively. There were significant differences among 105 families for all traits except moisture content. The high heritability estimate was found for height (0.4-0.69) and basic density (0.27-0.59). Applying 80% selection intensity on diameter and leaving 84 best families in each block will produce a high total genetic gain. Pilodyn penetration had negative correlation with diameter, wood density, and specific gravity.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Lara Comar Riva ◽  
Marcela Aparecida de Moraes ◽  
José Cambuim ◽  
Daniele Fernanda Zulian ◽  
Luciane Missae Sato ◽  
...  

1995 ◽  
Vol 71 (4) ◽  
pp. 473-478
Author(s):  
Y. H. Chui

Norway spruce [Picea abies (L.) Karst.] is one of the major non-native softwood species in the Maritimes. A project was undertaken to evaluate the grade yields and mechanical properties of Norway spruce. The project also provided comparative information on the wood quality of two Norway spruce provenances from Germany and Poland. Four plantations were selected for the study with two of these plantations containing trees of known provenances. One plantation was mature and the other three were juvenile. In total, 530 pieces of lumber and the same number of matched small clear specimens were tested for bending properties. Prior to testing, the lumber was visually graded according to both British and Canadian specifications. Quality of lumber varied significantly between sites. Lumber from the Polish provenance had slightly better mechanical properties than that from trees of the German provenance. Compared with published information, the plantation-grown Norway spruce had lower clear wood bending properties and specific gravity than primary eastern Canadian spruce species and balsam fir, and natural Norway spruce grown in Europe. Key words: Norway spruce [Picea abies (L.) Karst.], wood quality, bending properties, grade yield


2014 ◽  
Vol 1 (2) ◽  
pp. 63
Author(s):  
Budi Martono ◽  
Rudi T. Setiyono

<p>Skrining fitokimia dimaksudkan untuk melakukan evaluasi pendahuluan tentang kandungan kimia pada teh (Camellia sinensis). Selain itu, teh mengandung katekin yang dapat digunakan sebagai petunjuk kualitas dari daun teh. Penelitian bertujuan mengetahui kandungan senyawa aktif dan kadar katekin pada teh. Penelitian dilaksanakan mulai bulan April sampai dengan Juni 2012 di laboratorium Pengujian Balai Penelitian Tanaman Rempah dan Obat, Bogor. Skrining fitokimia pucuk peko dengan dua daun (p+2) dilakukan berdasarkan prosedur dari Materia Medika Indonesia (MMI), sedangkan analisis katekin dengan menggunakan metode SNI gambir. Penelitian disusun berdasarkan rancangan acak lengkap (RAL), enam perlakuan dengan empat ulangan. Perlakuan yang digunakan adalah enam genotipe teh (Tbs 1, Tbs 2, Hibrid, Cin 143, Rb 3, dan Kiara 8). Hasil penelitian menunjukkan keenam genotipe yang diuji mengandung senyawa alkaloid, saponin, tanin, fenolik, flavanoid, steroid, dan glikosida. Genotipe Tbs 1, Hibrid, dan Kiara 8 positif mengandung senyawa triterpenoid, sedangkan Tbs 2, Rb 3, dan Cin 143 negatif. Genotipe Tbs 1 dan Tbs 2 memiliki kandungan katekin paling tinggi (kecuali bagian ruas+tangkai daun) dibandingkan dengan empat genotipe lainnya. Pucuk peko, daun pertama, dan daun kedua pada genotipe Tbs 1 memiliki kadar katekin masing-masing 17,92%, 11,73%, dan 14,67%, sedangkan pada genotipe Tbs 2 masing-masing 18,22%, 13,48%, dan 15,81%. Kadar katekin terendah dihasilkan oleh bagian ruas+tangkai daun pada genotipe Rb 3 (1,78%). Pucuk peko menghasilkan kandungan katekin bervariasi antara 8,36%-18,22%, lebih tinggi dibandingkan dengan daun pertama, daun kedua, dan bagian ruas + tangkai daun.</p><p>Kata kunci: Camellia sinensis, fitokimia, genotipe, katekin, pucuk peko</p><p>Phytochemical screening was intended for a preliminary evaluation of the chemical constituents of the tea (Camellia sinensis). In addition, tea also contains catechin that can be used as an indication of the quality of tea leaves. The objectives of this study were to determine the content of the active compounds and catechin in tea. The research was conducted from April to June 2012 in the Laboratory of the Research Institute for Spices and Medicinal Crops, Bogor. The phytochemical screening was performed based on the procedure of Materia Medika Indonesia (MMI), while the catechin analysis used the method of SNI gambir. The study was carried out in completely randomized design with six treatments and four replications. The treatments used are six tea genotypes namely Tbs 1, Tbs 2, Hibrid, Cin 143, Rb 3, and Kiara 8. The results showed that the six tea genotypes tested contained the compounds of alkaloid, saponin, tannin, phenolic, flavanoid, steroid, and glycoside. Positively triterpenoid compounds present in the genotype of Tbs1, Hybrids, and Kiara 8, and negative in Tbs 2, Rb 3, and Cin 143. The genotypes of Tbs 1 and Tbs 2 produced the highest catechin content compared to the other genotypes. Catechin content was lowest in the part of internodes+leaf stalk of Rb 3 (1.78%). Pecco shoots produce catechin content of about 8.36%-18.22%, higher than the first leaf, second leaf, and the parts of internodes+leaf stalk.</p>


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1990 ◽  
Author(s):  
Tingting Yan ◽  
Sheng Yang ◽  
Yuan Chen ◽  
Qian Wang ◽  
Gaiyun Li

Agarwood is the resinous wood produced in some Aquilaria species and is highly valued for wide usages in medicine, incense, and perfume. To protect the threatened Aquilaria species, the cultivation of Aquilaria sinensis and artificial agarwood induction techniques have been effectively established in China. To evaluate the quality of agarwood induced by different techniques, patterns of chemical constituents in artificial agarwood by four methods (wounding using an axe, burning-chisel-drilling, chemical inducer, and biological inoculation) were analyzed and compared by UPLC-ESI-MS/MS and GC-EI-MS in this study. Results of GC-MS gave a panorama of chemical constituents in agarwood, including aromatic compounds, steroids, fatty acids, sesquiterpenoids, and 2-(2-phenlyethyl)-chromones (PECs). Sesquiterpenoids were dominant in agarwood induced by wounding using an axe. PEC comprised over 60% of components in agarwood produced by biological inoculation and chemical inducers. PECs were identified by UPLC-ESI-MS/MS in all artificial agarwood and the relative contents varied in different groups. Tetrahydro-2-(2-phenylethyl)-chromones (THPECs) in wounding by axes induced agarwood were lower while 2-(2-phenylethyl)-chromones (FPECs) were higher than other groups. The results showed that methods used for inducing agarwood formation in Aquilaria sinensis affect the chemical constituents of agarwood.


Sign in / Sign up

Export Citation Format

Share Document