Numerical Simulation of Gasoline Stratified Charge Compression Ignition Using 3D-CFD Coupled with Detailed Chemistry

2008 ◽  
Vol 180 (7) ◽  
pp. 1295-1316 ◽  
Author(s):  
Zhi Wang ◽  
Shi-Jin Shuai ◽  
Jian-Xin Wang ◽  
Fan Zhang
2005 ◽  
Vol 6 (5) ◽  
pp. 475-486 ◽  
Author(s):  
S-C Kong ◽  
Y Ra ◽  
R D Reitz

An engine CFD model has been developed to simulate premixed charge compression ignition (PCCI) combustion using detailed chemistry. The numerical model is based on the KIVA code that is modified to use CHEMKIN as the chemistry solver. The model was applied to simulate ignition, combustion, and emissions processes in diesel engines operated to achieve PCCI conditions. Diesel PCCI experiments using both low- and high-pressure injectors were simulated. For the low-pressure injector with early injection (close to intake valve closure), the model shows that wall wetting can be minimized by using a pressure-swirl atomizer with a variable spray angle. In the case of using a high-pressure injector, it is found that late injection (SOI = 5 ° ATDC) benefits soot emissions as a result of low-temperature combustion at highly premixed conditions. The model was also used to validate the emission reduction potential of an HSDI diesel engine using a double injection strategy that favours PCCI conditions. It is concluded that the present model is useful to assess future engine combustion concepts, such as PCCI and low-temperature combustion (LTC).


Author(s):  
Hongsheng Guo ◽  
Gregory J. Smallwood ◽  
Cedric Galizzi ◽  
Dany Escudie´

A V-shaped laminar stratified flame was investigated by numerical simulation. The primitive variable method, in which the fully elliptic governing equations were solved with detailed chemistry and complex thermal and transport properties, was used. The results indicate that in addition to the primary premixed flame, the stratified charge in a combustor causes the formation of a diffusion flame. The diffusion flame is located between the primary premixed flame branches. The fuel is fully decomposed and converted to some intermediate species, like CO and H2, in the primary premixed flame branches. Due to the shortage of oxygen, the formed CO and H2 in the fuel rich region of the premixed flame branch is further transported to the downstream until they meet the oxygen from the fuel lean region. This leads to the formation of the diffusion flame. There is an interaction between the diffusion flame and the primary premixed flame branches. The interaction intensifies the burning speed of the primary premixed flame. Both the heat transfer and the diffusion of hydrogen and some radicals cause the interaction. With the increase of the stratified charge region, the diffusion flame zone is enlarged and the interaction is enhanced.


Sign in / Sign up

Export Citation Format

Share Document