Temperature dependence of s*ca phase electric field behavior as evidenced by polarization current and dielectric measurements

2000 ◽  
Vol 245 (1) ◽  
pp. 101-110 ◽  
Author(s):  
R. Douali ◽  
C. Legrand ◽  
H. T. Nguyen
1978 ◽  
Vol 21 (85) ◽  
pp. 115-122
Author(s):  
J. H. Bilgram ◽  
H. Gränicher

AbstractThe interaction of point detects in ice has been neglected for a long time. Experimental data obtained from dielectric measurements on HF-doped crystals stimulated a new evaluation of the possibility of an interaction between Bjerrum defects and ions. In a previous paper it has been shown that this leads us to assume the existence of aggregates of Bjerrum defects and ions. In this paper these aggregates and Bjerrum defects are used to explain the dielectric properties of ice, especially the temperature dependence of the product of the high and low frequency conductivity σ0σ∞.The interaction of Bjerrum defects and impurity molecules leads to a dependence of the concentration of frenkel pairs on Bjerrum-defect concentration. At HF concentrations above the native Bjerrum-defect concentration the formation of a Frenkel pair is enhanced. This leads to the fast out-diffusion which has been studied in highly doped crystals by means of NMR techniques.


2007 ◽  
Vol 21 (19) ◽  
pp. 1239-1252 ◽  
Author(s):  
XIAO-FENG PANG ◽  
BO DENG ◽  
HUAI-WU ZHANG ◽  
YUAN-PING FENG

The temperature-dependence of proton electric conductivity in hydrogen-bonded molecular systems with damping effect was studied. The time-dependent velocity of proton and its mobility are determined from the Hamiltonian of a model system. The calculated mobility of (3.57–3.76) × 10-6 m 2/ Vs for uniform ice is in agreement with the experimental value of (1 - 10) × 10-2 m 2/ Vs . When the temperature and damping effects of the medium are considered, the mobility is found to depend on the temperature for various electric field values in the system, i.e. the mobility increases initially and reaches a maximum at about 191 K, but decreases subsequently to a minimum at approximately 241 K, and increases again in the range of 150–270 K. This behavior agrees with experimental data of ice.


1981 ◽  
Vol 9 (1-4) ◽  
pp. 293-296 ◽  
Author(s):  
W. Keppner ◽  
W. K�rner ◽  
P. Heubes ◽  
G. Schatz

1983 ◽  
Vol 15 (1-4) ◽  
pp. 283-287 ◽  
Author(s):  
M. H. Rafailovich ◽  
O. C. Kistner ◽  
E. Dafni ◽  
A. W. Sunyar ◽  
M. Mohsen ◽  
...  

2016 ◽  
Vol 16 (4) ◽  
pp. 3267-3272
Author(s):  
Masatoshi Sakai ◽  
Norifumi Moritoshi ◽  
Shigekazu Kuniyoshi ◽  
Hiroshi Yamauchi ◽  
Kazuhiro Kudo ◽  
...  

The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region.


Sign in / Sign up

Export Citation Format

Share Document