Anisotropy of electromechanical parameters of a single-layer composite of the piezoceramic - polymer system

2021 ◽  
Vol 575 (1) ◽  
pp. 29-32
Author(s):  
D. I. Makarev ◽  
N. A. Shvetsova ◽  
A. N. Reznichenko ◽  
M. A. Lugovaya
2020 ◽  
Author(s):  
Ion Durbaca ◽  
Radu Iatan ◽  
Elena Surdu ◽  
Dana-Claudia Farcas-Flamaropol

This paper deals with the theoretical and experimental mechanical characteristics of composite plates obtained from recyclable polymer and protein matrix and fibrous reinforcement. The definition of the theoretical model of the monolayer composite material with its structural elements and the physical-mechanical evaluation of its characteristics leads to the optimal and efficient design and use of all products made of such materials. By the theoretical and experimental determination of the mechanical characteristics that define the properties of the composite material, it can be decided on its use in specific industrial technical applications.


Author(s):  
S Govindarajan ◽  
K Syamkumar ◽  
Ninad Lamture ◽  
Shirish S Kale ◽  
T Ram Prabhu

This paper explores the addition of h-BN and iron to Cu-based brake pads on the performance benefits. It also investigates the effect of graded layering by synthesizing three and four-layer brake pads by powder compaction and sintering route. The top one or two layers are made of Cu-based composite containing Fe, h-BN, and W, while the middle layer is pure Cu and, bottom steel plate. Two different compositions were explored for the composites by varying Fe content. From the two composite compositions, brake pads with single-layer composite or two-layer composite were synthesized. Characterization of brake pad specimens was carried out using density measurements, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy. The brake pads were subjected to simulated braking tests at braking energy/cycle of 60, 96, and 136 K Joules. Wear rate, coefficient of friction, stopping distance, stopping time, and hardness were measured and compared among other brake pads. The brake pad containing single-layer Fe rich Cu composite showed the best performance in the simulated braking tests. EDS analysis of wear debris shows the formation of iron (boride, nitride, oxide) complex which is indicative of a surface with superior dry lubricating properties. This surface is a result of synergetic interaction between h-BN and Fe particles. The iron particles which are scattered in the Cu matrix composite act as low friction regions on the brake pad surface that interrupt the high friction regions on the Cu matrix, thus reducing the local and bulk temperature rise. The two-layer composite brake-pad showed performance intermediate to the two single-layer brake pads. No advantage due to higher thermal conductivities in Fe deficient composite was observed as the two composite layers, showed similar Fe contents in their matrix phases.


2021 ◽  
pp. 096739112110458
Author(s):  
Syed Shujaat Karim ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Tayyaba Noor ◽  
Mohammad Younas

The separation of air (O2/N2) via a polymeric membrane has recently piqued the interest of academic researcher as well as the industrial sector. Because of its remarkable characteristics, the polymeric membrane has emerged as one of the innovative and fast growing technology. However, two major problems faced by membrane technology, which hinder its growth in the commercial sector are, 1): The trade-off between permeability and selectivity. 2): Maintaining physical and chemical structural stability in a long-term commercial scale process. Recent advancements in membrane material, structural, and process design have enabled the development of dual-layer composite (DLC) membranes. This concept combines the benefits of both thinner mixed matrix membranes (MMMs) based active layer and porous support substrate. Due to these properties, the membrane exhibits higher perm-selectivity with enhanced mechanical strength as compared to single layer polymeric membrane. This review article mainly focused on the developmental progress of DLC membrane throughout the years. In which membrane structural details, selection criteria, fabrication methodologies, application [e.g., air (O2/N2) separation] were critically reviewed. In addition, challenges arising in the DLC membrane production and future prospects for the development of these membranes were also thoroughly discussed in this literature. This creates a paradigm for future research in the commercial development of these membranes for the air (O2/N2) separation process, which can be utilized in both medical and industrial sectors. [Formula: see text]


2008 ◽  
Vol 312 (1-2) ◽  
pp. 94-108 ◽  
Author(s):  
Roland L. Woodcock ◽  
Rama B. Bhat ◽  
Ion G. Stiharu

Sign in / Sign up

Export Citation Format

Share Document