Hexa-band pattern reconfigurable antenna with defected ground plane

Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Deepak Gangwar ◽  
Sachin Kumar
Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Sachin Kumar

Abstract A compact circularly polarized (CP) patch antenna is presented for modern communication systems. The prospective antenna consists of a microstrip-line inset-fed rectangular patch and a defected ground plane. A rotated rectangular slot and a modified electric-inductive-capacitive (m-ELC) resonator are introduced in the patch and the ground plane to achieve multiband behaviour. A corner of the radiating patch is truncated and an arrow-shaped stub is introduced for generating circular polarization. The physical area of the substrate is 0.26λ0 × 0.22λ0, and the radiator size is 0.16λ0 × 0.14λ0, where λ0 is the free-space wavelength estimated at the lowest frequency. The measured (S11≤-10 dB) bandwidths of the antenna are 80 MHz (3.58%) at 2.23 GHz, 75 MHz (2.64%) at 2.84 GHz, 80 MHz (2.50%) at 3.19 GHz, and 70 MHz (1.82%) at 3.83 GHz. The measured 3-dB axial ratio bandwidths are 40 MHz (1.41%), 100 MHz (3.12%), and 60 MHz (1.57%) at 2.84, 3.20 and 3.82 GHz, respectively. The proposed planar antenna design does not need dual-feed or multi-layered patches for achieving multiple CP bands. It offers easy integration with the printed circuits of the communication systems.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3897
Author(s):  
Supakit Kawdungta ◽  
Akkarat Boonpoonga ◽  
Chuwong Phongcharoenpanich

In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands.


2004 ◽  
Vol 14 (4) ◽  
pp. 136-138 ◽  
Author(s):  
A. Abdel-Rahman ◽  
A.K. Verma ◽  
A. Boutejdar ◽  
A.S. Omar

2018 ◽  
Vol 69 (4) ◽  
pp. 293-299 ◽  
Author(s):  
Boddapati T. P. Madhav ◽  
Shaik Rajiya ◽  
Badugu P. Nadh ◽  
Munuswami S. Kumar

Abstract In this article a compact frequency reconfigurable antenna is presented for wireless communication applications of industrial, scientific and medical band (ISM). The proposed antenna model is designed with the dimensions of 58mm×48 mm on FR4 epoxy of dielectric constant 4.4 with the thickness of 0.8 mm. The proposed antenna consists of defected T-shape ground plane, which acts as a reflector. In the design of frequency reconfigurable antenna, BAR 64-02V PIN diodes are used as switching elements and antenna is fed by microstrip transmission line. The proposed antenna can switch at different frequencies (2.5 GHz, 2.3 GHz and 2.2 GHz) depending on the biasing voltage applied to the PIN diodes. The current antenna showing VSWR < 2 in the operating band and providing peak realized gain of 3.2 dBi. A good matching obtained between expected and the measured results.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 12206-12212 ◽  
Author(s):  
Emanuele Andrea Casu ◽  
Andrei A. Muller ◽  
Montserrat Fernandez-Bolanos ◽  
Alessandro Fumarola ◽  
Anna Krammer ◽  
...  

2018 ◽  
Vol 7 (2.7) ◽  
pp. 127 ◽  
Author(s):  
A Vamseekrishna ◽  
B T P Madhav

A compact coplanar waveguide fed reconfigurable antenna with three notch bands are presented in this paper. Proposed antenna reconfigurability is acquired by placing bar6404 PIN diodes in the S-shaped ground plane in right to left mode and left to right mode. By switching the diode, reconfigurability achieved for three different operations. The substrate material for the proposed antenna is FR4 with dielectric constant 4.4 and loss tangent 0.02. The overall dimension of the reconfigurable antenna is around 30×26mm2. It is being observed in this work for the cause of each individual slot on notch band characteristics. The measured gain for the designed reconfigurable antenna is quite stable at operating frequencies except notch bands. The proposed antenna is suitable for practical wideband applications with notching.


Sign in / Sign up

Export Citation Format

Share Document