scholarly journals Vanadium Oxide Bandstop Tunable Filter for Ka Frequency Bands Based on a Novel Reconfigurable Spiral Shape Defected Ground Plane CPW

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 12206-12212 ◽  
Author(s):  
Emanuele Andrea Casu ◽  
Andrei A. Muller ◽  
Montserrat Fernandez-Bolanos ◽  
Alessandro Fumarola ◽  
Anna Krammer ◽  
...  
Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Deepak Gangwar ◽  
Sachin Kumar

Author(s):  
Ghanshyam Singh ◽  
Binod Kumar Kanaujia ◽  
Vijay Kumar Pandey ◽  
Sachin Kumar

Abstract A compact circularly polarized (CP) patch antenna is presented for modern communication systems. The prospective antenna consists of a microstrip-line inset-fed rectangular patch and a defected ground plane. A rotated rectangular slot and a modified electric-inductive-capacitive (m-ELC) resonator are introduced in the patch and the ground plane to achieve multiband behaviour. A corner of the radiating patch is truncated and an arrow-shaped stub is introduced for generating circular polarization. The physical area of the substrate is 0.26λ0 × 0.22λ0, and the radiator size is 0.16λ0 × 0.14λ0, where λ0 is the free-space wavelength estimated at the lowest frequency. The measured (S11≤-10 dB) bandwidths of the antenna are 80 MHz (3.58%) at 2.23 GHz, 75 MHz (2.64%) at 2.84 GHz, 80 MHz (2.50%) at 3.19 GHz, and 70 MHz (1.82%) at 3.83 GHz. The measured 3-dB axial ratio bandwidths are 40 MHz (1.41%), 100 MHz (3.12%), and 60 MHz (1.57%) at 2.84, 3.20 and 3.82 GHz, respectively. The proposed planar antenna design does not need dual-feed or multi-layered patches for achieving multiple CP bands. It offers easy integration with the printed circuits of the communication systems.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3897
Author(s):  
Supakit Kawdungta ◽  
Akkarat Boonpoonga ◽  
Chuwong Phongcharoenpanich

In light of the growth in demand for multiband antennas for medical applications, this research proposes a MICS/ISM meander-line microstrip antenna encapsulated in an oblong-shaped pod for use in diagnoses of the gastrointestinal tract. The proposed antenna is operable in the Medical Implant Communication System (MICS) and the Industrial, Scientific and Medical (ISM) bands. The antenna structure consists of a meander-line radiating patch, a flipped-L defected ground plane, and a loading resistor for antenna miniaturization. The MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod was simulated in various lossy-material environments. In addition, the specific absorption rate (SAR) was calculated and compared against the IEEE C95.1 standard. For verification, an antenna prototype was fabricated and experiments carried out in equivalent liquid mixtures, the dielectric constants of which resembled human tissue. The measured impedance bandwidths (|S11| ≤ −10 dB) for the MICS and ISM bands were 398–407 MHz and 2.41–2.48 GHz. The measured antenna gains were −38 dBi and −13 dBi, with a quasi-omnidirectional radiation pattern. The measured SAR was substantially below the maximum safety limits. As a result, the described MICS/ISM microstrip antenna encapsulated in an oblong-shaped pod can be used for real-time gastrointestinal tract diagnosis. The novelty of this work lies in the use of a meander-line microstrip, flipped-L defected ground plane, and loading resistor to miniaturize the antenna and realize the MICS and ISM bands.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 808
Author(s):  
Jaume Anguera ◽  
Aurora Andújar ◽  
José Luis Leiva ◽  
Oriol Massó ◽  
Joakim Tonnesen ◽  
...  

Wireless devices such as smart meters, trackers, and sensors need connections at multiple frequency bands with low power consumption, thus requiring multiband and efficient antenna systems. At the same time, antennas should be small to easily fit in the scarce space existing in wireless devices. Small, multiband, and efficient operation is addressed here with non-resonant antenna elements, featuring volumes less than 90 mm3 for operating at 698–960 MHz as well as some bands in a higher frequency range of 1710–2690 MHz. These antenna elements are called antenna boosters, since they excite currents on the ground plane of the wireless device and do not rely on shaping complex geometric shapes to obtain multiband behavior, but rather the design of a multiband matching network. This design approach results in a simpler, easier, and faster method than creating a new antenna for every device. Since multiband operation is achieved through a matching network, frequency bands can be configured and optimized with a reconfigurable matching network. Two kinds of reconfigurable multiband architectures with antenna boosters are presented. The first one includes a digitally tunable capacitor, and the second one includes radiofrequency switches. The results show that antenna boosters with reconfigurable architectures feature multiband behavior with very small sizes, compared with other prior-art techniques.


2004 ◽  
Vol 14 (4) ◽  
pp. 136-138 ◽  
Author(s):  
A. Abdel-Rahman ◽  
A.K. Verma ◽  
A. Boutejdar ◽  
A.S. Omar

Author(s):  
A. Taat ◽  
M. R. Kamarudin ◽  
M.H. Jamaluddin ◽  
M.R. Hamid ◽  
M. F. Jamlos ◽  
...  

2014 ◽  
Vol 56 (9) ◽  
pp. 2141-2146 ◽  
Author(s):  
Mukesh Kumar Khandelwal ◽  
Binod Kumar Kanaujia ◽  
Santanu Dwari ◽  
Sachin Kumar ◽  
A. K. Gautam

Sign in / Sign up

Export Citation Format

Share Document