High Strength, Low Thermal Expansion Coefficient Tight-Jacketed Optical Fiber with Thermotropic Liquid Crystal Polymer

1989 ◽  
Vol 169 (1) ◽  
pp. 109-118 ◽  
Author(s):  
F. Yamamoto ◽  
Y. Shuto
2013 ◽  
Vol 752 ◽  
pp. 48-56
Author(s):  
Andrea Simon ◽  
Károly Kovács ◽  
C. Hakan Gür ◽  
Tadeusz Pieczonka ◽  
Zoltán Gácsi

Composites are special material which can provide individual properties such as high strength with low density or good thermal conductivity with low thermal expansion coefficient. Composites conform to the constantly evolving and more complex expectations. In order to make a product with good quality, it is important to choose suitable materials and technology. In this research powder metallurgy (PM), as one of the most common composite manufacturing technology, was examined -which factors and mechanisms influence mostly the properties of the product. Ishikawa method was used to reveal these correlations.


2010 ◽  
Vol 92 ◽  
pp. 65-71 ◽  
Author(s):  
Pei Xin Zhang ◽  
Li Gao ◽  
Qiu Hua Yuan ◽  
Hai Lin Peng ◽  
Xiang Zhong Ren ◽  
...  

The glass-ceramics of MgO-Al2O3-SiO2 system were prepared by sintering technology. The crystallization process of MgO-Al2O3-SiO2 glass-ceramics was investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), and other techniques; the discussion of breaking strength, thermal expansion coefficient and relevant properties at different sintering temperatures was also presented. The results show that: (1) The main crystalline phase isα-cordierite at different sintering temperatures, and the samples show high flexural strength and low thermal expansion coefficient; (2) with the increase of sintering temperature, the content of crystal phase increases, while the thermal expansion coefficient decreases evidently, the flexural strength and tightness density rise up first, then go down.


2014 ◽  
Vol 599 ◽  
pp. 89-92 ◽  
Author(s):  
Sha Ding ◽  
Zhong He Shui ◽  
Teng Pan ◽  
Wei Chen

The low-thermal expansion coefficient (CTE) of cement paste and concrete are designed and prepared with fly ash in this study. The thermal expansion property and pore structure of cement/concrete are tested by Thermal Dilatometer, MIP, and SEM. The test results show that the addition of fly ash lowers the thermal expansion rate and coefficient of hardened paste. The increase of addition level is accompanied by the decrease of the thermal expansion coefficient. The introduction of fly ash could improve the pore structure of concrete, thus improve the thermal expansion property of cement concrete.


Sign in / Sign up

Export Citation Format

Share Document