scholarly journals Precision measurements with polar molecules: the role of the black body radiation

2007 ◽  
Vol 105 (11-12) ◽  
pp. 1723-1731 ◽  
Author(s):  
N. Vanhaecke ◽  
O. Dulieu
Author(s):  
Marta Sroczyńska ◽  
Anna Dawid ◽  
Michał Tomza ◽  
Zbigniew Idziaszek ◽  
Tommaso Calarco ◽  
...  

Abstract Ultracold molecules trapped in optical tweezers show great promise for the implementation of quantum technologies and precision measurements. We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field. This, for instance, enables a quantum computing scheme in which the rotational structure is used to encode the qubit states. We estimate the typical operation timescales needed for state engineering to be in the range of few microseconds. We further underline the important role of the spatial structure of the two-body states, with the potential for significant gate speedup employing trap-induced resonances.


2020 ◽  
Vol 19 ◽  
pp. 423-441
Author(s):  
Józef Spałek

The principal mathematical idea behind the statistical properties of black-body radiation (photons) was introduced already by L. Boltzmann (1877/2015) and used by M. Planck (1900; 1906) to derive the frequency distribution of radiation (Planck’s law) when its discrete (quantum) structure was additionally added to the reasoning. The fundamental physical idea – the principle of indistinguishability of the quanta (photons) – had been somewhat hidden behind the formalism and evolved slowly. Here the role of P. Debye (1910), H. Kamerlingh Onnes and P. Ehrenfest (1914) is briefly elaborated and the crucial role of W. Natanson (1911a; 1911b; 1913) is emphasized. The reintroduction of this Natanson’s statistics by S. N. Bose (1924/2009) for light quanta (called photons since the late 1920s), and its subsequent generalization to material particles by A. Einstein (1924; 1925) is regarded as the most direct and transparent, but involves the concept of grand canonical ensemble of J. W. Gibbs (1902/1981), which in a way obscures the indistinguishability of the particles involved. It was ingeniously reintroduced by P. A. M. Dirac (1926) via postulating (imposing) the transposition symmetry onto the many-particle wave function. The above statements are discussed in this paper, including the recent idea of the author (Spałek 2020) of transformation (transmutation) – under specific conditions – of the indistinguishable particles into the corresponding to them distinguishable quantum particles. The last remark may serve as a form of the author’s post scriptum to the indistinguishability principle.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

The book is an inspirational survey of fundamental physics, emphasizing the use of variational principles. Chapter 1 presents introductory ideas, including the principle of least action, vectors and partial differentiation. Chapter 2 covers Newtonian dynamics and the motion of mutually gravitating bodies. Chapter 3 is about electromagnetic fields as described by Maxwell’s equations. Chapter 4 is about special relativity, which unifies space and time into 4-dimensional spacetime. Chapter 5 introduces the mathematics of curved space, leading to Chapter 6 covering general relativity and its remarkable consequences, such as the existence of black holes. Chapters 7 and 8 present quantum mechanics, essential for understanding atomic-scale phenomena. Chapter 9 uses quantum mechanics to explain the fundamental principles of chemistry and solid state physics. Chapter 10 is about thermodynamics, which is built around the concepts of temperature and entropy. Various applications are discussed, including the analysis of black body radiation that led to the quantum revolution. Chapter 11 surveys the atomic nucleus, its properties and applications. Chapter 12 explores particle physics, the Standard Model and the Higgs mechanism, with a short introduction to quantum field theory. Chapter 13 is about the structure and evolution of stars and brings together material from many of the earlier chapters. Chapter 14 on cosmology describes the structure and evolution of the universe as a whole. Finally, Chapter 15 discusses remaining problems at the frontiers of physics, such as the interpretation of quantum mechanics, and the ultimate nature of particles. Some speculative ideas are explored, such as supersymmetry, solitons and string theory.


Author(s):  
Anthony Duncan ◽  
Michel Janssen

This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.


2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


1988 ◽  
Vol 40 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Cheng Chu ◽  
J. L. Sperling

Electromagnetic fluctuations, induced by energetic charged particles, are calculated using correlation techniques for a uniform magnetized plasma. Power emission in the ion-cyclotron range of frequencies (ICRF) is calculated for a specific model of velocity distribution function. The emissive spectra are distinct from that of the black-body radiation and have features that are consistent with experimental observation.


1999 ◽  
Vol 13 (02) ◽  
pp. 161-189
Author(s):  
C. SYROS

The essentials of quantum mechanics are derived from Liouville's theorem in statistical mechanics. An elementary solution, g, of Liouville's equation helps to construct a differentiable N-particle distribution function (DF), F(g), satisfying the same equation. Reality and additivity of F(g): (i) quantize the time variable; (ii) quantize the energy variable; (iii) quantize the Maxwell–Boltzmann distribution; (iv) make F(g) observable through time-elimination; (v) produce the Planck constant; (vi) yield the black-body radiation spectrum; (vii) support chronotopology introduced axiomatically; (viii) the Schrödinger and the Klein–Gordon equations follow. Hence, quantum theory appears as a corollary of Liouville's theorem. An unknown connection is found allowing the better understanding of space-times and of these theories.


1964 ◽  
Vol 86 (2) ◽  
pp. 193-199 ◽  
Author(s):  
R. C. Birkebak ◽  
E. M. Sparrow ◽  
E. R. G. Eckert ◽  
J. W. Ramsey

Measurements have been made of the hemispherical and specular reflectance of metallic surfaces of controlled roughness. The surfaces, which were ground nickel rectangles, were irradiated at various angles of incidence by a beam of black-body radiation, the temperature of which was also varied. The instrumentation which was devised to perform the experiments is described. The measurements show that beyond a certain surface roughness, the hemispherical reflectance is virtually independent of further increases in roughness. On the other hand, the specular reflectance decreases steadily with increasing roughness. Additionally, the hemispherical reflectance is found to be quite insensitive to the angle of incidence, while the specular reflectance increases with angle of incidence for the rougher surfaces.


Sign in / Sign up

Export Citation Format

Share Document