Theoretical study on interaction of cytochrome f and plastocyanin complex by a simple coarse-grained model with molecular crowding effect

2017 ◽  
Vol 116 (5-6) ◽  
pp. 666-677 ◽  
Author(s):  
Satoshi Nakagawa ◽  
Isman Kurniawan ◽  
Koichi Kodama ◽  
Muhammad Saleh Arwansyah ◽  
Kazutomo Kawaguchi ◽  
...  
2016 ◽  
Vol 186 ◽  
pp. 241-263 ◽  
Author(s):  
Pedro A. Sánchez ◽  
Elena S. Pyanzina ◽  
Ekaterina V. Novak ◽  
Joan J. Cerdà ◽  
Tomàs Sintes ◽  
...  

We present a theoretical study on the design of a supramolecular magnetoresponsive coating. The coating is formed by a relatively dense array of supracolloidal magnetic filaments grafted to a surface in a polymer brush-like arrangement. In order to determine and optimise the properties of the magnetic filament brush, we perform extensive computer simulations with a coarse-grained model that takes into account the correlations between the magnetic moments of the particles and the backbone crosslinks. We show that the self-assembly of magnetic beads from neighbouring filaments defines the equilibrium structural properties of the complete brush. In order to control this self-assembly, we highlight two external stimuli that can lead to significant effects: temperature of the system and an externally applied magnetic field. Our study reveals self-assembly scenarios inherently driven by the crosslinking and grafting constraints. Finally, we explain the mechanisms of structural changeovers in the magnetic filament brushes and confirm the possibility of controlling them by changing the temperature or the intensity of an external magnetic field.


2019 ◽  
Vol 216 ◽  
pp. 94-115 ◽  
Author(s):  
Shou-Ting Hsieh ◽  
Lu Zhang ◽  
De-Wei Ye ◽  
Xuhui Huang ◽  
Yuan-Chung Cheng

Coarse-grained model for dimeric PSII core complex reveals robust light harvesting through inter-monomer energy transfer and pooling in CP47s.


2021 ◽  
Vol 22 (2) ◽  
pp. 947
Author(s):  
Mitsuki Tsuruta ◽  
Yui Sugitani ◽  
Naoki Sugimoto ◽  
Daisuke Miyoshi

Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Vincent K. Shen ◽  
Jason K. Cheung ◽  
Jeffrey R. Errington ◽  
Thomas M. Truskett

Proteins aggregate and precipitate from high concentration solutions in a wide variety of problems of natural and technological interest. Consequently, there is a broad interest in developing new ways to model the thermodynamic and kinetic aspects of protein stability in these crowded cellular or solution environments. We use a coarse-grained modeling approach to study the effects of different crowding agents on the conformational equilibria of proteins and the thermodynamic phase behavior of their solutions. At low to moderate protein concentrations, we find that crowding species can either stabilize or destabilize the native state, depending on the strength of their attractive interaction with the proteins. At high protein concentrations, crowders tend to stabilize the native state due to excluded volume effects, irrespective of the strength of the crowder-protein attraction. Crowding agents reduce the tendency of protein solutions to undergo a liquid-liquid phase separation driven by strong protein-protein attractions. The aforementioned equilibrium trends represent, to our knowledge, the first simulation predictions for how the properties of crowding species impact the global thermodynamic stability of proteins and their solutions.


Sign in / Sign up

Export Citation Format

Share Document