Effect of low-pressure carburizing and plasma nitriding on mechanical properties and fatigue endurance limits of low alloy sintered steels

2020 ◽  
Vol 63 (2) ◽  
pp. 75-79
Author(s):  
A. Veiga ◽  
C. Luno-Bilbao ◽  
S. Sainz ◽  
F. Castro
2011 ◽  
Vol 197-198 ◽  
pp. 1658-1661
Author(s):  
Ying Xiong ◽  
Han Ying Zheng

Fatigue tests are carried out for 16MnR welded joint under constant strain control. Test results reveal that 16MnR weld metal exhibits characteristic of cyclic softening and non-masing obviously. The strain–life curve can be best described by the three-parameter equation. It shows the fatigue endurance limit in the heat-affecting zone (HAZ) of welded joint is lower than that in the weld metal.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2009 ◽  
Vol 6 (S1) ◽  
pp. S314-S320 ◽  
Author(s):  
Luciano Dutrey ◽  
Evangelina De Las Heras ◽  
Hernán G. Svoboda ◽  
Pablo A. Corengia

2016 ◽  
Vol 19 (6) ◽  
pp. 534-542 ◽  
Author(s):  
Thomas A. Redles ◽  
Ayman W. Ali ◽  
Yusuf A. Mehta ◽  
Douglas Cleary

2011 ◽  
Vol 47 (3) ◽  
pp. 262-266 ◽  
Author(s):  
V. R. Shayapov ◽  
M. L. Kosinova ◽  
A. P. Smirnov ◽  
E. A. Maksimovskii ◽  
B. M. Ayupov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document