scholarly journals Spectral clustering on spherical coordinates under the degree-corrected stochastic blockmodel

Technometrics ◽  
2021 ◽  
pp. 1-28
Author(s):  
Francesco Sanna Passino ◽  
Nicholas A. Heard ◽  
Patrick Rubin-Delanchy
2011 ◽  
Vol 39 (4) ◽  
pp. 1878-1915 ◽  
Author(s):  
Karl Rohe ◽  
Sourav Chatterjee ◽  
Bin Yu

2020 ◽  
Author(s):  
Zhaoxi Sun

Host-guest binding remains a major challenge in modern computational modelling. The newest 7<sup>th</sup> statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and predict the binding affinities in all three host-guest binding cases of the 6<sup>th</sup> SAMPL challenge. In this work, we employed the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The predicted binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations.


2017 ◽  
Vol 923 (5) ◽  
pp. 7-16
Author(s):  
A.V. Kavrayskiy

The experience of mathematical modeling of the 3D-sphere in the 4D-space and projecting it by mathematical cartography methods in the 3D-Euclidian space is presented. The problem is solved by introduction of spherical coordinates for the 3D-sphere and their transformation into the rectangular coordinates, using the mathematical cartography methods. The mathematical relationship for calculating the length distortion mp(s) of the ds linear element when projecting the 3D-sphere from the 4-dimensional Euclidian space into three-dimensional Euclidian space is derived. Numerical examples, containing the modeling of the ds small linear element by spherical coordinates of 3D-sphere, projecting this sphere into the 3D-Euclidian space and length of ds calculating by means of its projection dL and size of distortion mp(s) are solved. Based on the model of the Universe known in cosmology as the 3D-sphere, the hypothesis of connection between distortion mp(s) and the known observed effects Redshift and Microwave Background Radiation is considered.


1991 ◽  
Vol 56 (3) ◽  
pp. 602-618
Author(s):  
Vladimír Kudrna

Parabolic partial differential equations used in chemical engineering for the description of mass transport and heat transfer and analogous relationship derived in stochastic processes theory are given. A standard transformation procedure is applied, allowing these relations to be generally written in curvilinear coordinates and particular expressions for cylindrical and spherical coordinates to be derived. The relation between the probability density for the position of a discernible particle and the concentration of a set of such particles is discussed.


Author(s):  
Xiaohui Wang ◽  
Yu Bai ◽  
Yadong Gao ◽  
Dong Liu ◽  
Yan Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 355
Author(s):  
Weixian Tan ◽  
Borong Sun ◽  
Chenyu Xiao ◽  
Pingping Huang ◽  
Wei Xu ◽  
...  

Classification based on polarimetric synthetic aperture radar (PolSAR) images is an emerging technology, and recent years have seen the introduction of various classification methods that have been proven to be effective to identify typical features of many terrain types. Among the many regions of the study, the Hunshandake Sandy Land in Inner Mongolia, China stands out for its vast area of sandy land, variety of ground objects, and intricate structure, with more irregular characteristics than conventional land cover. Accounting for the particular surface features of the Hunshandake Sandy Land, an unsupervised classification method based on new decomposition and large-scale spectral clustering with superpixels (ND-LSC) is proposed in this study. Firstly, the polarization scattering parameters are extracted through a new decomposition, rather than other decomposition approaches, which gives rise to more accurate feature vector estimate. Secondly, a large-scale spectral clustering is applied as appropriate to meet the massive land and complex terrain. More specifically, this involves a beginning sub-step of superpixels generation via the Adaptive Simple Linear Iterative Clustering (ASLIC) algorithm when the feature vector combined with the spatial coordinate information are employed as input, and subsequently a sub-step of representative points selection as well as bipartite graph formation, followed by the spectral clustering algorithm to complete the classification task. Finally, testing and analysis are conducted on the RADARSAT-2 fully PolSAR dataset acquired over the Hunshandake Sandy Land in 2016. Both qualitative and quantitative experiments compared with several classification methods are conducted to show that proposed method can significantly improve performance on classification.


Sign in / Sign up

Export Citation Format

Share Document