Cotton gauze-hydrogel composites: Valuable tools for electrically modulated drug delivery

2016 ◽  
Vol 65 (9) ◽  
pp. 442-450 ◽  
Author(s):  
Giuseppe Cirillo ◽  
Umile Gianfranco Spizzirri ◽  
Manuela Curcio ◽  
Tania Spataro ◽  
Nevio Picci ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 248
Author(s):  
Marta O. Teixeira ◽  
Joana C. Antunes ◽  
Helena P. Felgueiras

In the last decades, much research has been done to fasten wound healing and target-direct drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some reaching already the market, even though their mechanical stability remains a challenge. To overcome this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance of fiber–hydrogel composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques and fiber spinning approaches has been crucial in the development of scaffolding systems with improved mechanical strength and medicinal properties. In this review, a comprehensive overview of the recently developed fiber–hydrogel composite strategies for wound healing and drug delivery is provided. The methodologies employed in fiber and hydrogel formation are also highlighted, together with the most compatible polymer combinations, as well as drug incorporation approaches creating stimuli-sensitive and triggered drug release towards an enhanced host response.


Author(s):  
Nanjunda Reddy B H ◽  
Prdadipta Ranjan Rauta ◽  
Venkatalakshimi V ◽  
Swamy Sreenivasa

 Objective: The main objective of this work was to formulate and evaluate Closite-30B/nanoAg filled hydrogel composites which are further intentended to be used for the study of drug delivery,antibacterial, and anticancer activityMethods: In this study, Cloisite-30B (C-30B) clay dispersed biopolymer sodium alginate (SA)-grafted-poly (acrylamide [AAm]-co-lignosulfonic acid) hydrogel composites were synthesized by free radical in situ polymerization reaction technique using SA, AAm, and lignosulfonic acid biopolymers in different proportions in combination. which are subjected to invitro drug delivery and Minimum inhibitory concentration(MIC) method for antibacterial activity study by using Streptococcus faecalis (S.faecalis) and Escherichia coli (E. coli)bacteria. The biocompatibility of the prepared gels were determined by standard protocol HaCaT-cells and MCF-7 cell lines further the prepared hydrogel composites were characterized for particle size,encapsulation efficiency,swelling properties,compatibility studies by FTIR etc.Results: The formulated hydrogels were characterized by X-ray diffraction (XRD) to analyze the particles size and crystallinity. The presence of functional groups and their chemical interaction with the drug, C-30B, and silver nanoparticles (AgNPs) were confirmed by the FTIR spectroscopy. Furthermore, the presence of AgNPs in the matrix was confirmed by ultraviolet/visible spectroscopy. Thermogravimetric analysis was performed to find out the thermal degradation, thermal stability, and the percentage of weight loss at various temperatures. Swelling studies revealed that C-30B and AgNPs induced composites exhibited higher swelling ratio than pure hydrogels. The hydrogels with C-30B/AgNPs displayed excellent antibacterial activity against both Gram-positive and Gram-negative bacteria. Further, these hydrogel composites were loaded with the drug paclitaxel (PT), and drug release study showed that the sustained release of the drug from C-30B/Ag hydrogel matrix compared to rest of other samples. Hydrogel composites were cytocompatible in nature (with HaCaT cells) and the cell viability decreased (with MCF-7cells) with the presence of lignosulfonic acid as well as C-30B and AgNPs in the samples as evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide to its insoluble formazan assay.Conclusion: The synthesized hydrogel composites were successfully characterized and eavaluated for sustained release of paclitaxel drug delivery at different pHs and temperatures and it is found that C30B/Ag filled composites exhibits contolled release of drug with higher rate, especially at lower pH (pH2) and higher temperature (37oC) and the same formulations which exhibits better anitbcterial and anticancer activity compared to the virgin samples So the prepared C30B/AgNPs hydrogels composites used in drug dlivery for the effective treatment of cancer and used against bacterias and cancerous cells.


RSC Advances ◽  
2018 ◽  
Vol 8 (38) ◽  
pp. 21229-21242 ◽  
Author(s):  
Guangya Xu ◽  
Bin Li ◽  
Ting Wang ◽  
Jun Wan ◽  
Yan Zhang ◽  
...  

In this study, a quercetin-loaded thermosensitive injectable hydrogel system (Qu-M–hydrogel composites) was constructed based on nanotechnology.


2001 ◽  
Vol 70 (1-2) ◽  
pp. 109-123 ◽  
Author(s):  
Srinivasan Ramanathan ◽  
Lawrence H Block

2018 ◽  
Vol 11 (4) ◽  
pp. 118 ◽  
Author(s):  
Claire Desfrançois ◽  
Rachel Auzély ◽  
Isabelle Texier

Several drug delivery systems already exist for the encapsulation and subsequent release of lipophilic drugs that are well described in the scientific literature. Among these, lipid nanoparticles (LNP) have specifically come up for dermal, transdermal, mucosal, intramuscular and ocular drug administration routes in the last twenty years. However, for some of them (especially dermal, transdermal, mucosal), the LNP aqueous dispersions display unsuitable rheological properties. They therefore need to be processed as semi-solid formulations such as LNP-hydrogel composites to turn into versatile drug delivery systems able to provide precise spatial and temporal control of active ingredient release. In the present review, recent developments in the formulation of lipid nanoparticle-hydrogel composites are highlighted, including examples of successful encapsulation and release of lipophilic drugs through the skin, the eyes and by intramuscular injections. In relation to lipid nanoparticles, a specific emphasis has been put on the LNP key properties and how they influence their inclusion in the hydrogel. Polymer matrices include synthetic polymers such as poly(acrylic acid)-based materials, environment responsive (especially thermo-sensitive) polymers, and innovative polysaccharide-based hydrogels. The composite materials constitute smart, tunable drug delivery systems with a wide range of features, suitable for dermal, transdermal, and intramuscular controlled drug release.


2017 ◽  
Vol 80 ◽  
pp. 29-37 ◽  
Author(s):  
Mohamed Rehan ◽  
S. Zaghloul ◽  
F.A. Mahmoud ◽  
A.S. Montaser ◽  
A. Hebeish
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document