Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and in vitro cellular behavior

2018 ◽  
Vol 67 (17) ◽  
pp. 1005-1015 ◽  
Author(s):  
Elnaz Tamjid
2019 ◽  
Vol 10 (3) ◽  
pp. 38 ◽  
Author(s):  
Hamasa Faqhiri ◽  
Markus Hannula ◽  
Minna Kellomäki ◽  
Maria Teresa Calejo ◽  
Jonathan Massera

This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4 (BonAlive ®), as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.


2016 ◽  
Vol 30 ◽  
pp. 319-333 ◽  
Author(s):  
Patrina S.P. Poh ◽  
Dietmar W. Hutmacher ◽  
Boris M. Holzapfel ◽  
Anu K. Solanki ◽  
Molly M. Stevens ◽  
...  

2013 ◽  
Vol 5 (4) ◽  
pp. 045005 ◽  
Author(s):  
Patrina S P Poh ◽  
Dietmar W Hutmacher ◽  
Molly M Stevens ◽  
Maria A Woodruff

2015 ◽  
Vol 815 ◽  
pp. 396-400
Author(s):  
Zhi Hong Dong ◽  
Chang Chun Zhou

In order to repair the etched human dental enamel, 45S5 bioactive glass with different particle size was used to remineralization enamel in vitro. 45S5 bioactive glass powder was sieved, and divided into the three groups. Freshly sound human second molar teeth from patients were extracted and specimens of dentine-enamel junction were prepared under water-cooled diamond saw, then the enamel surface was polished and finally rinsed. The enamel samples were soaked in simulated oral fluid (SOF) for 5 days. Particle size distribution, topological images and mechanical properties such as hardness and reduced modulus of enamel surface were evaluated by the laser particle size analyzer, atomic force microscope (AFM) and nanoindentation technology. The results indicated that the adhered particle size onto the enamel surface was concentrated on the 1-10 μm. With the decreasing particle size, adhesive capacity onto the enamel surface increased, but the mechanical properties decreased gradually after soaking in SOF for 5 days. In a short period time, Group 2 particles are suitable of repair the etched enamel, and further improve its mechanical properties. This study suggests that proper size 45S5 bioactive glass may be used to repair the acid etched teeth as a toothpaste additive.


Sign in / Sign up

Export Citation Format

Share Document