Changes in the vegetative growth of the low-chill peach tree in response to reproductive shoot pruning after harvesting

2011 ◽  
Vol 39 (3) ◽  
pp. 153-160 ◽  
Author(s):  
ME Weber ◽  
RA Pilatti ◽  
MH Sordo ◽  
MS García ◽  
D Castro ◽  
...  
2016 ◽  
Vol 18 (4) ◽  
pp. 367-375 ◽  
Author(s):  
Aurélie Rousselin ◽  
Marie-Hélène Sauge ◽  
Marie-Odile Jordan ◽  
Gilles Vercambre ◽  
Françoise Lescourret ◽  
...  

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 594e-594
Author(s):  
Charles J. Graham ◽  
Gregory L. Reighard

A field experiment was conducted to assess the effects of several foliar nutrient sprays on the vegetative growth of 'Jefferson' peach budded on 'Nemaguard' and 'Lovell' rootstocks planted on a site with a history of Peach Tree Short Life. The trees received foliar applications of 2 mN solutions of ammonium citrate, calcium citrate, calcium lactate, calcium phosphate, or a water control at 3 week intervals from April to August. Vegetative growth measurements were taken after one growing season. Trunk cross-sectional area (TCSA) was significantly increased by ammonium citrate (TCSA=20.35 cm2), calcium citrate (TCSA=20.03 cm2), and calcium lactate (TCSA=19.91 cm2) when compared to controls (TCSA=16.75 cm2). Trees on 'Nemaguard' responded more to treatments than those on 'Lovell'. All nutrient sprays increased TCSA, lateral growth, terminal growth, and total tree growth on 'Nemaguard' rootstock. Terminal growth increased 12-36%, and total tree growth increased 18-51 % compared to control trees, but only ammonium citrate applications were significantly greater. Lateral growth and TCSA of treated trees increased 65-168% and 17-28%, respectively.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 494B-494
Author(s):  
T.J. Tworkoski ◽  
D.M. Glenn

Peach tree size has been restricted when trees were grown continuously with grass after tree planting. However, control of excess vegetative growth of fruit trees was inconsistent when grass was planted beneath mature trees. This research determined the effect of seven grasses on growth, leaf nitrogen concentration, and yield of 8-year-old peach trees and on weed abundance. Two cultivars (`Loring' and `Redhaven') of peach [Prunus persica (L.) Batsch] trees were planted in separate orchards in 1987 in a split-plot design with grass as a main effect and time as the subplot. Nine treatments were installed as ground covers beneath peach trees in 1995: Festuca arundinacea, Lolium perenne var Manhattan II; L. perenne var. Linn; Agrostis gigantea, Dactylis glomerata, Phleum pratense, Bromus carintus, weedy control, and herbicide control (simazine, glyphosate). In general, grasses reduced vegetative growth and yield in `Loring' and `Redhaven'. For example, compared to herbicide treatments, orchardgrass reduced sprout length by 27% in `Loring' and by 15% in `Redhaven'. Fruit-bearing branch length was reduced with orchardgrass by 30% in `Loring' and 19% in `Redhaven'. Orchardgrass affected fruit yield more than vegetative growth, reducing yield by 37% and 24% in `Loring' (predominantly in the 2- to 2.5-inch size class) and `Redhaven' (predominantly in the >2.5-inch size class), respectively. All grasses were not equally competitive, `Linn' perennial ryegrass never significantly affected growth or yield. Weedy treatments also did not differ from herbicide treatments in peach tree growth and yield. Grasses and weeds consistently reduced peach tree leaf nitrogen by 17% compared to herbicide treatment, but weed density was not correlated with reductions in yield and vegetative growth. The results indicate that peach cultivars respond differently to grass competition but the relative competitiveness of grass species was similar for both cultivars. Grass competition can reduce growth of mature peach trees but this reduction did not translate to reduced pruning time per tree.


1992 ◽  
Vol 84 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Laurence S. Shore ◽  
Yoram Kapulnik ◽  
Bruria Ben-Dor ◽  
Yechezkial Fridman ◽  
Smadar Wininger ◽  
...  

2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

2017 ◽  
Vol 4 (2) ◽  
pp. 23-27
Author(s):  
Mergia Abera ◽  
Tekleyohannes Berhanu

Participatory on-farm evaluation of improved forage crops was conducted in six mixed farming system districts of Southern Ethiopia with the objective to identify farmers preferred forage crops (legumes and grasses). Two annual forage legumes (Vigna unguiculata L. (cow pea) and Lablab purpureus (L.), two perennial legumes (Medicago sativa (L.) (alfalfa) and Desmodium intortum (Mill.) Urb. (green-leaf)), and three perennial grasses (Chloris gayana Knuth (Rhodes grass) and two Pennisetum purpureum Schumach (elephant grass) accessions (No.16800 and 16798)) were evaluated in the study. The major farmers’ criteria considered in the evaluation of forage species were vegetative growth, herbage yield, tillering, protection of soil erosion, palatability, perfor- mance under dry weather conditions, performance in marginal area under low input management, multipurpose use (conservation and soil fertility) and fast growing condition. The study showed that elephant grass accession No. 16798, 16800 and Chloris gayana adapted well and farmers preferred them for their higher herbage yield, vegetative growth, tillering ability and drought resistance. Even though the annual forage legumes Lablab purpureus and Vigna unguiculata were superior in their forage yield, the farmers preferred the perennial forage legumes (Desmodium intortum and Medicago sativa) mainly for their performance under dry weather condi- tion due to their longer growth period. Therefore, the consideration of farmers’ preference for forage crops is crucial for increased adoption of improved forage crops in the region.


Sign in / Sign up

Export Citation Format

Share Document