Temperature dependence of yield stress, tensile elongation and deformation structures in polysynthetically twinned crystals of Ti-Al

1995 ◽  
Vol 72 (6) ◽  
pp. 1609-1631 ◽  
Author(s):  
H. Inui ◽  
K. Kishida ◽  
M. Misaki ◽  
M. Kobayashi ◽  
Y. Shirai ◽  
...  
1988 ◽  
Vol 133 ◽  
Author(s):  
Yoo-Dong Hahn ◽  
Sung H. Whang

ABSTRACTThe ternary TiAl-Nb (Llo) alloys stabilized at 1000°C for a week were prepared into miniature specimens for compressive deformation tests. The specimens were deformed in uniaxial compression at room temperature as well as various high temperatures. The yield stress and fracture strain were determined with respect to Nb concentration, and as a function of temperature to investigate positive temperature dependence.Dislocation structures and other deformation structures of the deformed alloys were studied by TEM.


2018 ◽  
Vol 941 ◽  
pp. 1474-1478
Author(s):  
Yelm Okuyama ◽  
Masaki Tanaka ◽  
Tetsuya Ohashi ◽  
Tatsuya Morikawa

The effect of the activated slip systems on the temperature dependence of yield stress was investigated in α-Ti by using crystal plasticity finite element method. A model for finite element analysis (FEA) was constructed based on experimental results. The displacement in FEA was applied up to the nominal strain of 4% which is the same strain as the experimental one. Stress-strain curves were obtained, which corresponds to experimental data taken every 50 K between 73 K and 673 K. The used material constants which are temperature dependent were elastic constants, and lattice friction stresses. The lattice friction stresses of basal slip systems were set to be higher than that of pyramidal slip systems at 73 K. Then, the lattice friction stresses were set to be closer as the temperature increases. It was found that the activation of slip systems is strong temperature dependent, and that the yield stress depends on the number of active slip systems.


The dependence of the yield and flow stresses of vacuum-cast and extruded polycrystalline beryllium on the grain size, d, is studied over 20-400 °C. Both follow the standard d -1/2 relationship. The Taylor orientation factor in the deformation of the poly crystal is ca. 4.3. The marked temperature dependence of the yield stress between 20 and 200 °C arises primarily from the intragranular resistance to dislocation motion, in particular on prismatic planes. The variation of the flow stress with d1/2 increases progressively with strain and this is attributed to the effect of grain size on the dislocation density at a given strain; the increase is particularly marked for beryllium because of its high rigidity modulus.


1994 ◽  
Vol 364 ◽  
Author(s):  
S. S. Ezz ◽  
Y. Q. Sun ◽  
P. B. Hirsch

AbstractThe strain rate sensitivity ß of the flow stress τ is associated with workhardening and β=(δτ/δln ε) is proportional to the workhardening increment τh = τ - τy, where τy is the strain rate independent yield stress. The temperature dependence of β/τh reflects changes in the rate controlling mechanism. At intermediate and high temperatures, the hardening correlates with the density of [101] dislocations on (010). The nature of the local obstacles at room temperature is not established.


1993 ◽  
Vol 41 (4) ◽  
pp. 1149-1154 ◽  
Author(s):  
Y. Umakoshi ◽  
T. Nakano ◽  
T. Takenaka ◽  
K. Sumimoto ◽  
T. Yamane

Sign in / Sign up

Export Citation Format

Share Document