Analysis of optimizing Injection parameters and EGR for DICI engine performance powered by Lemongrass oil using Box-Behnken (RSM) modelling

Author(s):  
Sathiyamoorthi Ramalingam ◽  
Sankaranarayanan Gomathinayakam ◽  
Venkatraman Mani ◽  
Jayaseelan Veerasundaram ◽  
Sivakumar Kachapalayam
2022 ◽  
pp. 146808742110667
Author(s):  
Akhilendra Pratap Singh ◽  
Ashutosh Jena ◽  
Avinash Kumar Agarwal

In the last decade, advanced combustion techniques of the low-temperature combustion (LTC) family have attracted researchers because of their excellent emission characteristics; however, combustion control remains the main issue for the LTC modes. The objective of this study was to explore premixed charge compression ignition (PCCI) combustion mode using a double pilot injection (DPI; pilot-pilot-main) strategy to achieve superior combustion control and to tackle the soot-oxides of nitrogen (NOx) trade-off. Experiments were carried out in a single-cylinder research engine fueled with 20% v/v biodiesel blended with mineral diesel (B20) and 40% v/v biodiesel blended with mineral diesel (B40) vis-à-vis baseline mineral diesel. Engine speed and rate of fuel-mass injected were maintained constant at 1500 rpm and 0.6 kg/h mineral diesel equivalent, respectively. Pilot injection timings (at 45° and 35° before top dead center (bTDC)) and fuel quantities were fixed, while three fuel injection pressures (FIPs) and four different start of the main injection (SoMI) timings were investigated in this study. Results showed that multiple pilot injections resulted in a stable PCCI combustion mode, making it suitable for higher engine loads. For all test fuels, advancing SoMI timings led to relatively lesser knocking; however, engine performance characteristics degraded at advanced SoMI timings. B40 exhibited relatively superior engine performance among different test fuels at lower FIP; however, the difference in engine performance was insignificant at higher FIPs. Fuel injection parameters showed a significant effect on emissions, especially on the NOx and particulates. Advancing SoMI timing resulted in 20%–50% lower particulates emissions with a slight NOx increase; however, the differences in emissions at different SoMI timings reduced at higher FIPs. Somewhat higher particulates from biodiesel blends were a critical observation of this study, which was more dominant at advanced SoMI timings. Qualitative correlation between NOx-total particulate mass (TPM) was another critical analysis, which exhibited the relative importance of different fuel injection parameters for other alternative fuels. Overall, B20 at 700 bar FIP and 20° SoMI timing emerged as the most promising proposition with some penalty in CO emission.


Fuel ◽  
2017 ◽  
Vol 209 ◽  
pp. 754-768 ◽  
Author(s):  
A.P. Carlucci ◽  
A. Ficarella ◽  
D. Laforgia ◽  
L. Strafella

2013 ◽  
Vol 465-466 ◽  
pp. 322-326 ◽  
Author(s):  
M. Adlan Abdullah ◽  
Farid Nasir Ani ◽  
Masjuki Hassan

It is in the interest of proponents of biodiesel to increase the utilization of the renewable fuel. The similarities of the methyl ester properties to diesel fuel and its miscibility proved to be an attractive advantage. It is however generally accepted that there are some performance and emissions deficit when a diesel engine is operated with biodiesel. There are research efforts to improve the diesel engine design to optimize the combustion with biodiesel. Since the common rail engines operates on flexible injection strategies, there exist an opportunity to improve engine performance and offset the fuel economy deficit by means of optimizing the engine control strategies. This approach may prove to be more practical and easily implemented. This study investigated the effects of the fuel injection parameters - rail pressure, injection duration and injection timing - on a common rail passenger car engine in terms of the fuel economy. Palm oil based biodiesel up to 30% blend in diesel was used in this study. The end of injection, (EOI), was found to be the most important parameter for affecting fuel consumption and thermal efficiency.


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


Author(s):  
M. A. Abd Halim ◽  
N. A. R. Nik Mohd ◽  
M. N. Mohd Nasir ◽  
M. N. Dahalan

Induction system or also known as the breathing system is a sub-component of the internal combustion system that supplies clean air for the combustion process. A good design of the induction system would be able to supply the air with adequate pressure, temperature and density for the combustion process to optimizing the engine performance. The induction system has an internal flow problem with a geometry that has rapid expansion or diverging and converging sections that may lead to sudden acceleration and deceleration of flow, flow separation and cause excessive turbulent fluctuation in the system. The aerodynamic performance of these induction systems influences the pressure drop effect and thus the engine performance. Therefore, in this work, the aerodynamics of motorcycle induction systems is to be investigated for a range of Cubic Feet per Minute (CFM). A three-dimensional simulation of the flow inside a generic 4-stroke motorcycle airbox were done using Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) solver in ANSYS Fluent version 11. The simulation results are validated by an experimental study performed using a flow bench. The study shows that the difference of the validation is 1.54% in average at the total pressure outlet. A potential improvement to the system have been observed and can be done to suit motorsports applications.


Sign in / Sign up

Export Citation Format

Share Document