Origin of Early Cretaceous high-K calc-alkaline granitoids, western Tibet: implications for the evolution of the Tethys in NW China

2013 ◽  
Vol 56 (1) ◽  
pp. 88-103 ◽  
Author(s):  
Yao-Hui Jiang ◽  
Zheng Liu ◽  
Ru-Ya Jia ◽  
Shi-Yong Liao ◽  
Peng Zhao ◽  
...  
2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


2020 ◽  
Vol 157 (7) ◽  
pp. 1121-1143
Author(s):  
Nan Xu ◽  
Cai-lai Wu ◽  
Yuan-Hong Gao ◽  
Min Lei ◽  
Kun Zheng ◽  
...  

AbstractThe South Altyn Orogenic Belt (SAOB) is one of the most important orogenic belts in NW China, consisting of the South Altyn Continental Block and the Apa–Mangya Ophiolitic Mélange Belt. However, its Palaeozoic tectonic evolution is still controversial. Here, we present petrological, geochemical, zircon U–Pb and Lu–Hf isotopic data for the Mangya plutons with the aim of establishing the Palaeozoic tectonic evolution. We divide the Early Palaeozoic magmatism in the Apa–Mangya Ophiolitic Mélange Belt into four episodes and propose a plate tectonic model for the formation of these rocks. During 511–494 Ma, the South Altyn Ocean (SAO) was in a spreading stage, and some shoshonite series, I-type granitic rocks were generated. From 484 to 458 Ma, the oceanic crust of the SAO subducted northward, accompanied by large-scale magmatic events resulting in the generation of vast high-K calc-alkaline series, I-type granitic rocks. During 450–433 Ma, the SAO closed, and break-off of the subducted oceanic slab occurred, with the generation of some high-K calc-alkaline series, I–S transitional type granites. The SAOB was in post-orogenic extensional environment from 419 to 404 Ma, and many A-type granites were generated.


2020 ◽  
Vol 36 (11) ◽  
pp. 3265-3286
Author(s):  
MENG FanChao ◽  
◽  
QU ZhiJing ◽  
CUI Yan ◽  
CHEN Yong ◽  
...  

Author(s):  
Qigui Mao ◽  
Songjian Ao ◽  
Brian F. Windley ◽  
Zhiyong Zhang ◽  
Miao Sang ◽  
...  

To constrain the closure mechanism and time of the Paleo-Asian Ocean, we report new geochronological and geochemical data for Triassic granites along a NW−SE corridor from Eastern Tianshan to Beishan, NW China. Seven granites have U-Pb ages that young southwards from 245 Ma to 234 Ma in the Kanguer accretionary complex, to 237 Ma to 234 Ma in the eastern Central Tianshan block, to 229 Ma to 223 Ma in the Liuyuan accretionary complex. Granites in the Kanguer accretionary complex formed by fractional crystallization and are peraluminous, high-K, calc-alkaline, and crust-derived. They have very low MgO (Mg# = 6−9), Cr, and Ni contents, and their high εNd(t) (+3.40) and εHf(t) (+4.49 to +11.91) isotopes indicate that the Dananhu arc crust was juvenile. The Huaniushan pluton in the Liuyuan accretionary complex displays the geochemical signatures of both A1- and A2-type granites (Y/Nb = 0.32−3.39). All other granites in the Central Tianshan block and Liuyuan accretionary complex are aluminous A2-types with high K2O+Na2O, Al, rare earth elements (REE), Zr+Nb+Y, Ga, Fe/Mg, and Y/Nb and remarkable depletions of Eu, Ba, Nb, Ta, Sr, P, and Ti. They have a broad range of MgO (Mg# = 9−59), Cr, and Ni contents, Isr (0.70741−0.70945) values, negative εNd (t) (−2.98 to −1.14), and low to moderate εHf(t) (−1.22 to +7.78), which suggests a mixture of mantle and crustal components. These 245−223 Ma granitoids show marked Nb-Ta depletions that point to a subduction origin. Notable enrichments in Nd-Hf isotopes of Late Triassic granites are likely an indication of collision. Integration with previous data enables us to conclude that the delamination of an oceanic slab and mantle upwelling induced partial melting of thickened arc crust during a tectonic transition from a multiple supra-subduction margin to a collisional setting in the Late Triassic.


2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


Sign in / Sign up

Export Citation Format

Share Document