Parameterizing the aerodynamic roughness length on a regional scale based on multi-source remote-sensing data

2015 ◽  
Vol 36 (13) ◽  
pp. 3483-3502
Author(s):  
Deyong Hu ◽  
Cheng Wang ◽  
Kun Qiao ◽  
Yingjun Xu ◽  
Lei Deng
2010 ◽  
Vol 14 (12) ◽  
pp. 2661-2669 ◽  
Author(s):  
J. Colin ◽  
R. Faivre

Abstract. Roughness length of land surfaces is an essential variable for the parameterisation of momentum and heat exchanges. The growing interest in the estimation of the surface turbulent flux parameterisation from passive remote sensing leads to an increasing development of models, and the common use of simple semi-empirical formulations to estimate surface roughness. Over complex surface land cover, these approaches would benefit from the combined use of passive remote sensing and land surface structure measurements from Light Detection And Ranging (LIDAR) techniques. Following early studies based on LIDAR profile data, this paper explores the use of imaging LIDAR measurements for the estimation of the aerodynamic roughness length over a heterogeneous landscape of the Heihe river basin, a typical inland river basin in the northwest of China. The point cloud obtained from multiple flight passes over an irrigated farmland area were used to separate the land surface topography and the vegetation canopy into a Digital Elevation Model (DEM) and a Digital Surface Model (DSM) respectively. These two models were then incorporated in two approaches: (i) a strictly geometrical approach based on the calculation of the plan surface density and the frontal surface density to derive a geometrical surface roughness; (ii) a more aerodynamic approach where both the DEM and DSM are introduced in a Computational Fluid Dynamics model (CFD). The inversion of the resulting 3-D wind field leads to a fine representation of the aerodynamic surface roughness. Examples of the use of these three approaches are presented for various wind directions together with a cross-comparison of results on heterogeneous land cover and complex roughness element structures.


2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


Author(s):  
G. Waldhoff ◽  
S. Eichfuss ◽  
G. Bareth

The classification of remote sensing data is a standard method to retrieve up-to-date land use data at various scales. However, through the incorporation of additional data using geographical information systems (GIS) land use analyses can be enriched significantly. In this regard, the Multi-Data Approach (MDA) for the integration of remote sensing classifications and official basic geodata for a regional scale as well as the achievable results are summarised. On this methodological basis, we investigate the enhancement of land use analyses at a very high spatial resolution by combining WorldView-2 remote sensing data and official cadastral data for Germany (the Automated Real Estate Map, ALK). Our first results show that manifold thematic information and the improved geometric delineation of land use classes can be gained even at a high spatial resolution.


2021 ◽  
Author(s):  
Ahmad Al Bitar ◽  
Taeken Wijmer ◽  
Ludovic Arnaud ◽  
Remy Fieuzal ◽  
Gaetan Pique ◽  
...  

<p>Achieving the United Nations Sustainable Development Goal 2 that addresses food security and sustainable agriculture requires the promotion of readily transferable and scalable agronomical solutions. The combination of high-resolution remote sensing data, field information, and physical models is identified as a robust way of answering this requirement.  Here, we present the AgriCarbon-EO tool, a decision support system that provides the yield, biomass, water and carbon budget components of agricultural fields at a 10m resolution and at a regional scale. The tool assimilates high resolution optical remote sensing data from Copernicus Sentinel-2 satellites into a  radiative transfer model and a crop model. First, the application of a spatial Bayesian retrieval approach to the PROSAIL radiative transfer model provides Leaf Area Index (LAI) with its associated uncertainty. Second, LAI is assimilated into the SAFYE-CO2 crop model using a temporal Bayesian retrieval that enables the calculation of the yield, biomass, carbon and water budgets components with their associated uncertainties. In addition to remote sensing data, input datasets of crop types, weather and soil data are used to constrain the system. The concise weather data is provided from local weather stations or weather forecasts and is used to force the crop model (SAFYE-CO2) dynamics. The soil data are used in two folds. First to better parametrize the soil emissions in the radiative model retrievals and second to parametrise the water infiltration in the soil module of the crop model. The AgriCarbon-EO tool has been optimized to enable the computation of the yield, carbon, and water budget at high spatial resolution (10m) and large scale (100km2). The model is applied over the South-West of France covered by 3 Sentinel-2 tiles for major crops (wheat, maize,  sunflower). The outputs are validated over experimental plots for biomass, yield, soil moisture, and CO2 fluxes located all in the South-West of France. The experimental sites include the FR-AUR and FR-LAM ICOS sites and 22 cropland fields (biomass sampling). The validation exercise is done for the 2017-2018 and 2019-2020 cultural years. We show the added value of the use of high resolution in driving the crop model to take into account the impact of complex processes that are embedded in the LAI signal like vegetation water stress, disease, and agricultural practices. We show that the system is capable of providing the yield, carbon, and water budget of major crops accurately.  At the regional scale, we give global estimates of the carbon budget, water needs, and yields per crop type. We present the impact of intra-plot heterogeneity in the estimation of yield and the annual carbon and water budget showing the added value for high-resolution intra-plot modeling.</p>


Sign in / Sign up

Export Citation Format

Share Document