The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features

1996 ◽  
Vol 17 (7) ◽  
pp. 1425-1432 ◽  
Author(s):  
S. K. McFEETERS
2020 ◽  
Vol 12 (9) ◽  
pp. 1468 ◽  
Author(s):  
Loránd Szabó ◽  
Balázs Deák ◽  
Tibor Bíró ◽  
Gareth J. Dyke ◽  
Szilárd Szabó

Observing wetland areas and monitoring changes are crucial to understand hydrological and ecological processes. Sedimentation-induced vegetation spread is a typical process in the succession of lakes endangering these habitats. We aimed to survey the tendencies of vegetation spread of a Hungarian lake using satellite images, and to develop a method to identify the areas of risk. Accordingly, we performed a 33-year long vegetation spread monitoring survey. We used the Normalized Difference Vegetation Index (NDVI) and the Modified Normalized Difference Water Index (MNDWI) to assess vegetation and open water characteristics of the basins. We used these spectral indices to evaluate sedimentation risk of water basins combined with the fact that the most abundant plant species of the basins was the water caltrop (Trapa natans) indicating shallow water. We proposed a 12-scale Level of Sedimentation Risk Index (LoSRI) composed from vegetation cover data derived from satellite images to determine sedimentation risk within any given water basin. We validated our results with average water basin water depth values, which showed an r = 0.6 (p < 0.05) correlation. We also pointed on the most endangered locations of these sedimentation-threatened areas, which can provide crucial information for management planning of water directorates and management organizations.


2020 ◽  
Vol 963 (9) ◽  
pp. 53-64
Author(s):  
V.F. Kovyazin ◽  
Thi Lan Anh Dang ◽  
Viet Hung Dang

Tram Chim National Park in Southern Vietnam is a wetland area included in the system of specially protected natural areas (SPNA). For the purposes of land monitoring, we studied Landsat-5 and Sentinel-2B images obtained in 1991, 2006 and 2019. The methods of normalized difference vegetation index (NDVI) and water objects – normalized difference water index (NDWI) were used to estimate the vegetation in National Park. The allocated land is classifi ed by the maximum likelihood method in ENVI 5.3 into categories. For each image, a statistical analysis of the land after classifi cation was performed. Between 1991 and 2019, land changes occurred in about 57 % of the Tram Chim National Park total area. As a result, the wetland area has signifi cantly reduced there due to climate change. However, the area of Melaleuca forests in Tram Chim National Park has increased due to the effi ciency of reforestation in protected areas. Melaleuca forests are also being restored.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Acácio ◽  
Ralf H. E. Mullers ◽  
Aldina M. A. Franco ◽  
Frank J. Willems ◽  
Arjun Amar

AbstractAnimal movement is mainly determined by spatial and temporal changes in resource availability. For wetland specialists, the seasonal availability of surface water may be a major determinant of their movement patterns. This study is the first to examine the movements of Shoebills (Balaeniceps rex), an iconic and vulnerable bird species. Using GPS transmitters deployed on six immature and one adult Shoebills over a 5-year period, during which four immatures matured into adults, we analyse their home ranges and distances moved in the Bangweulu Wetlands, Zambia. We relate their movements at the start of the rainy season (October to December) to changes in Normalized Difference Water Index (NDWI), a proxy for surface water. We show that Shoebills stay in the Bangweulu Wetlands all year round, moving less than 3 km per day on 81% of days. However, average annual home ranges were large, with high individual variability, but were similar between age classes. Immature and adult Shoebills responded differently to changes in surface water; sites that adults abandoned became drier, while sites abandoned by immatures became wetter. However, there were no differences in NDWI of areas used by Shoebills before abandonment and newly selected sites, suggesting that Shoebills select areas with similar surface water. We hypothesise that the different responses to changes in surface water by immature and adult Shoebills are related to age-specific optimal foraging conditions and fishing techniques. Our study highlights the need to understand the movements of Shoebills throughout their life cycle to design successful conservation actions for this emblematic, yet poorly known, species.


Author(s):  
Suwarsono ◽  
Jalu Tejo Nugroho ◽  
Wiweka

Flood disaster is a major issues due to its frequently events on several areas in Indonesia. Delineation of inundated area caused by flood is needed to support disaster emergency response. The objective of this research was to identify inundated areas using NDWI methos from Landsat TM/ETM+ data on lowland regions of Java island. A pair of the data (before and during the flood) were in each observation areas. Observation areas were selected in several location of lowland regions of Java island where great event of flood occurred during the last decades. The thresholds values of NDWI change were used to separate the flood and non flood areas. The results showed that the extent of inundated area caused by flood on lowland regions can be identifyed and separated based on NDWI variables extracted from Landsat TM/ETM+.


Sign in / Sign up

Export Citation Format

Share Document