Size-Dependent Thermal Buckling and Postbuckling of Functionally Graded Annular Microplates Based on the Modified Strain Gradient Theory

2013 ◽  
Vol 37 (2) ◽  
pp. 174-201 ◽  
Author(s):  
R. Ansari ◽  
M. Faghih Shojaei ◽  
V. Mohammadi ◽  
R. Gholami ◽  
H. Rouhi
2019 ◽  
Vol 30 (4) ◽  
pp. 593-605 ◽  
Author(s):  
Mohammad Hosseini ◽  
Reza Bahaadini ◽  
Zahra Khalili-Parizi

This investigation aims to explore the non-conservative instability of a functionally graded material micro-beam subjected to a subtangential force. The functionally graded material micro-beam is integrated with piezoelectric layers on the lower and upper surfaces. To take size effect into account, the mathematical derivations are expanded in terms of three length scale parameters using the modified strain gradient theory in conjunction with the Euler–Bernoulli beam model. However, the modified strain gradient theory includes modified couple stress theory and classical theory as special cases. Applying extended Hamilton’s principle and Galerkin method, the governing equation and corresponding boundary conditions are obtained and then solved numerically by the eigenvalue analysis, respectively. The results illustrated effects of non-conservative parameter, length scale parameter, different material gradient index, and various values of piezoelectric voltage on the natural frequencies, flutter and divergence instabilities of a cantilever functionally graded material micro-beam. It is found that both the material gradient index and applied piezoelectric voltage have significant influence on the vibrational behaviors, divergence and flutter instability regions. Furthermore, a comparison between the various micro-beam theories on the basis of modified couple stress theory, modified strain gradient theory, and classical theory are presented.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950007 ◽  
Author(s):  
R. Gholami ◽  
R. Ansari ◽  
H. Rouhi

In this paper, the size-dependent nonlinear pull-in behavior of rectangular microplates made from functionally graded materials (FGMs) subjected to electrostatic actuation is numerically studied using a novel approach. The small scale effects are taken into account according to Mindlin’s first-order strain gradient theory (SGT). The plate model is formulated based on the first-order shear deformation theory (FSDT) using the virtual work principle. The size-dependent relations are derived in general form, which can be reduced to those based on different elasticity theories, including the modified strain gradient, modified couple stress and classical theories (MSGT, MCST and CT). The solution of the problem is arrived at by employing an efficient matrix-based method called the variational differential quadrature (VDQ). First, the quadratic form of the energy functional including the size effects is obtained. Then, it is discretized by the VDQ method using a set of matrix differential and integral operators. Finally, the achieved discretized nonlinear equations are solved by the pseudo arc-length continuation method. In the numerical results, the effects of material length scale parameters, side length-to-thickness ratio and FGM’s material gradient index on the nonlinear pull-in instability of microplates with different boundary conditions are investigated. A comparison is also made between the predictions by the MSGT, MCST and CT.


Sign in / Sign up

Export Citation Format

Share Document