X-Ray Powder Diffraction Patterns of Somen-Alkanone Urea Inclusion Compounds

1967 ◽  
Vol 2 (1) ◽  
pp. 139-142 ◽  
Author(s):  
B. W. Brodman ◽  
Jack Radell
1964 ◽  
Vol 42 (5) ◽  
pp. 1069-1072 ◽  
Author(s):  
Jack Radell ◽  
B. W. Brodman ◽  
E. D. Bergmann

The formation and stability of urea inclusion compounds of n-alkyl bromides and iodides were established from X-ray powder diffraction data. The stability of both homologous families is greater than would be expected from a consideration of the cross-sectional diameter of the molecules only. The procedure for isolating the complexes has been simplified.


In this paper we report single crystal X-ray diffraction studies of urea inclusion compounds containing diacyl peroxides (dioctanoyl peroxide (OP), diundecanoyl peroxide (UP), lauroyl peroxide (LP)) as the guest component. In these inclusion compounds, the host (urea) molecules crystallize in a hexagonal structure that contains linear, parallel, non-intersecting channels (tunnels). The guest (diacyl peroxide) molecules are closely packed inside these channels with a periodic repeat distance that is incommensurate with the period of the host structure along the channel axis. Furthermore, there is pronounced inhomogeneity within the guest structure: within each single crystal, there are regions in which the guest molecules are three-dimensionally ordered, and other regions in which they are only one-dimensionally ordered (along the channel axis). Although it has not proven possible to ‘determine’ the guest structures in the conventional sense, substantial information concerning their average periodicities and their orientational relationships with respect to the host has been deduced from single crystal X-ray diffraction photographs recorded at room temperature. For OP/urea, UP/urea and LP/urea, the guest structure in the three-dimensionally ordered regions is monoclinic, and six types of domain of this monoclinic structure can be identified within each single crystal. The relative packing of diacyl peroxide molecules is the same in each domain, and the different domains are related by 60° rotation about the channel axis. For each of these inclusion compounds, the offset between the ‘heights’ of the guest molecules in adjacent channels is the same ( ca . 4.6 Å (4.6 x 10 -10 m)) within experimental error, suggesting that the relative interchannel packing of the guest molecules is controlled by a property of the diacyl peroxide group. In addition to revealing these novel structural properties, the work discussed in this paper has more general relevance concerning the measurement and interpretation of single crystal X-ray diffraction patterns that are based on more than one three-dimensionally periodic reciprocal lattice. Seven separate reciprocal lattices are required to rationalize the complete X-ray diffraction pattern from each diacyl peroxide/urea crystal studied here.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1706-C1706
Author(s):  
Rachael Lee ◽  
Michael Probert ◽  
Jonathon Steed

Urea inclusion compounds (UICs), the β-phase of urea, have been known only since 1949 and have revealed various structural and behavioural characteristics of interest, largely influenced by the type of guest molecule present in the crystal. These structures have a hexagonally symmetrical honeycomb structure of a hydrogen-bonded urea network encapsulating the guest molecules, a defining motif of these clathrates. The simplest of this class contains an alkane guest (C7-C20), creating an incommensurate relationship between host and guest and a significantly disordered crystal structure with respect to the guest. As a result, diffuse scattering is typical in the diffraction patterns of UICs. As the guest molecules are altered, so too is the behaviour of the host network. With certain dihaloalkanes for example, the guest may coil into an atypical conformation in order to present a commensurate relationship with the host. This increase in guest order creates a distortion of the host network away from hexagonal symmetry, creating an internal stress which causes domain switching within the system. A number of different effects such as this can be seen on changing the guest molecule, ferroelasticity being an example for certain diketone guests. In this work we are exploring examples of UICs which, due to unusual interaction between the host and guest, display atypical structural features, symmetry or behaviour. These crystal structures are under investigation at a range of temperatures and pressures, by both X-ray and neutron diffraction techniques in order to fully understand the nature and bonding of UICs.


Author(s):  
Th. Weber ◽  
H. Boysen ◽  
M. Honal ◽  
F. Frey ◽  
R. B. Neder

AbstractX-ray diffuse scattering phenomena and satellite reflections in urea inclusion compounds with guest molecules of varying lengths (tridecane, tetradecane, pentadecane, heptadecane and a mixture of pentadecane and hexadecane) were investigated between room temperature and 30 K. It was found that diffuse


2019 ◽  
Vol 6 (8) ◽  
pp. 190518 ◽  
Author(s):  
Kirsten Christensen ◽  
P. Andrew Williams ◽  
Rhian Patterson ◽  
Benjamin A. Palmer ◽  
Michel Couzi ◽  
...  

In a recent paper (Couzi et al. 2018 R. Soc. open sci. 5 , 180058. ( doi:10.1098/rsos.180058 )), we proposed a new phenomenological model to account for the I↔II↔“III” phase sequence in incommensurate n -alkane/urea inclusion compounds, which represents an alternative interpretation to that proposed in work of Toudic et al. In a Comment (Toudic et al. 2019 R. Soc. open sci. 6 , 182073. ( doi:10.1098/rsos.182073 )), Toudic et al. have questioned our assignment of the superspace group of phase II of n -nonadecane/urea, which they have previously assigned, based on a (3 + 2)-dimensional superspace, as C222 1 (00 γ )(10 δ ). In this Reply, we present new results from a comprehensive synchrotron single-crystal X-ray diffraction study of n -nonadecane/urea, involving measurements as a detailed function of temperature across the I↔II↔“III” phase transition sequence. Our results demonstrate conclusively that “main reflections” ( h, k, l , 0) with h+k odd are observed in phase II of n -nonadecane/urea (including temperatures in phase II that are just below the transition from phase I to phase II), in full support of our assignment of the (3+1)-dimensional superspace group P2 1 2 1 2 1 (00 γ ) to phase II. As our phenomenological model is based on phase II and phase “III” of this incommensurate material having the same (3+1)-dimensional superspace group P2 1 2 1 2 1 (00 γ ), it follows that the new X-ray diffraction results are in full support of our phenomenological model.


Sign in / Sign up

Export Citation Format

Share Document