Electrophysiological study of the interactive role of the cannabinoid breakdown inhibitors and L-type calcium channels on granular neurons in the hippocampal dentate gyrus in rats

2021 ◽  
pp. 1-9
Author(s):  
Seyed Asaad Karimi ◽  
Fatemeh Kazemi ◽  
Hamidreza Komaki ◽  
Masoumeh Kourosh Arami ◽  
Siamak Shahidi ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e89258 ◽  
Author(s):  
Johannes Leuchtweis ◽  
Michael K. Boettger ◽  
Fanny Niv ◽  
Christoph Redecker ◽  
Hans-Georg Schaible

2020 ◽  
Author(s):  
José María Caramés ◽  
Elena Pérez-Montoyo ◽  
Raquel Garcia-Hernandez ◽  
Santiago Canals

AbstractDistinct forms of memory processing are often causally identified with specific brain regions, but a key facet of memory processing includes linking separated neuronal populations. Using cell-specific manipulations of inhibitory neuronal activity, we discovered a key role of the dentate gyrus (DG) in coordinating dispersed neuronal populations during memory formation. In whole-brain fMRI and electrophysiological experiments, we found that parvalbumin (PV) interneurons in the DG control the functional coupling of the hippocampus within a wider network of neocortical and subcortical structures including the prefrontal cortex (PFC) and the nucleus accumbens (NAc). In a novel object-location task, regulation of PV interneuron activity enhanced or prevented memory encoding and, without effect upon the total number of task activated c-Fos+ cells, revealed a correlation between activated neuronal populations in the hippocampus-PFC-NAc network. These data suggest a critical regulatory role of PV interneurons in the dentate gyrus in brain-wide polysynaptic communication channels and the association of cell assemblies across multiple brain regions.


2017 ◽  
pp. 441-448 ◽  
Author(s):  
A. PISTIKOVA ◽  
H. BROZKA ◽  
A. STUCHLIK

The function of adult neurogenesis in the dentate gyrus is not yet completely understood, though many competing theories have attempted to explain the function of these newly-generated neurons. Most theories give adult neurogenesis a role in aiding known hippocampal/dentate gyrus functions. Other theories offer a novel role for these new cells based on their unique physiological qualities, such as their low excitability threshold. Many behavioral tests have been used to test these theories, but results have been inconsistent and often contradictory. Substantial variability in tests and protocols may be at least partially responsible for the mixed results. On the other hand, conflicting results arising from the same tests can serve as aids in elucidating the function of adult neurogenesis. Here, we offer a hypothesis that considers the cognitive nature of tasks commonly used to assess the function of adult neurogenesis, and introduce a dichotomy between tasks focused on discrimination vs. generalization. We view these two aspects as opposite ends of the continuous spectrum onto which traditional tests can be mapped. We propose that high neurogenesis favors behavioral discrimination while low adult neurogenesis favors behavioral generalization of a knowledge or rule. Since many tasks require both, the effects of neurogenesis could be cancelled out in many cases. Although speculative, we hope that our view presents an interesting and testable hypothesis of the effect of adult neurogenesis in traditional behavioral tasks. We conclude that new, carefully designed behavioral tests may be necessary to reach a final consensus on the role of adult neurogenesis in behavior.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


Sign in / Sign up

Export Citation Format

Share Document