Bonding process and mechanisms of interface evolution of stainless steel clad plates fabricated by cyclic phase transformation heat treatment

Author(s):  
Donghui Guo ◽  
Zhentai Zheng ◽  
Shuai Li ◽  
Jinling Yu ◽  
Liang Chang
Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2205 ◽  
Author(s):  
István Mészáros ◽  
Bálint Bögre

The aim of this work was to study expansively the process of the eutectoidal phase transformation of 2507-type super-duplex stainless steel. Three sample sets were prepared. The first sample set was made to investigate the effect of the previous cold rolling and heat treatment for the eutectoidal phase transformation. Samples were cold rolled at seven different rolling reductions which was followed by heat treatment at five different temperatures. The second sample set was prepared to determine the activation energy of the eutectoidal decomposition process using the Arrhenius equation. Samples were cold rolled at seven different rolling reductions and were heat treated at the same temperature during eight different terms. A third sample set was made to study how another plastic-forming technology, beside the cold rolling, can influence the eutectoidal decomposition. Samples were elongated by single axis tensile stress and were heat treated at the same temperature. The results of the first and the third sample sets were compared. The rest δ-ferrite contents were calculated using the results of AC and DC magnetometer measurements. DC magnetometer was used as a feritscope device in this work. Light microscope and electron back scattering diffraction (EBSD) images demonstrated the process of the eutectoidal decomposition. The thermoelectric power and the hardness of the samples were measured. The results of the thermoelectric power measurement were compared with the results of the δ-ferrite content measurement. The accurate value of the coercive field was determined by a Foerster-type DC coercimeter device.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


Alloy Digest ◽  
1963 ◽  
Vol 12 (6) ◽  

Abstract ALLEGHENY METAL 350 is a chromium-nickel-molybdenum stainless steel developed to bridge the gap between the 300 and 400 series. It can be hardened by heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-29. Producer or source: Allegheny Ludlum Corporation. Originally published May 1955, revised June 1963.


1992 ◽  
Vol 7 (11) ◽  
pp. 3065-3071 ◽  
Author(s):  
Peir-Yung Chu ◽  
Isabelle Campion ◽  
Relva C. Buchanan

Phase transformation and preferred orientation in ZrO2 thin films, deposited on Si(111) and Si(100) substrates, and prepared by heat treatment from carboxylate solution precursors were investigated. The deposited films were amorphous below 450 °C, transforming gradually to the tetragonal and monoclinic phases on heating. The monoclinic phase developed from the tetragonal phase displacively, and exhibited a strong (111) preferred orientation at temperature as low as 550 °C. The degree of preferred orientation and the tetragonal-to-monoclinic phase transformation were controlled by heating rate, soak temperature, and time. Interfacial diffusion into the film from the Si substrate was negligible at 700 °C and became significant only at 900 °C, but for films thicker than 0.5 μm, overall preferred orientation exceeded 90%.


Sign in / Sign up

Export Citation Format

Share Document