Simultaneous use of plant growth promoting rhizobacterium and nitrogenous fertilizers may help in promoting growth, yield, and nutritional quality of okra

2017 ◽  
Vol 40 (9) ◽  
pp. 1339-1350 ◽  
Author(s):  
Qudsia Nazir ◽  
Muhammad Javed Akhtar ◽  
Muhammad Imran ◽  
Muhammad Arshad ◽  
Azhar Hussain ◽  
...  
2020 ◽  
Vol 12 (20) ◽  
pp. 8490
Author(s):  
Ni Luh Suriani ◽  
Dewa Ngurah Suprapta ◽  
Novizar Nazir ◽  
Ni Made Susun Parwanayoni ◽  
Anak Agung Ketut Darmadi ◽  
...  

Rice is a crop that is consumed as a staple food by the majority of the people in the world and therefore failure in rice crops, due to any reason, poses a severe threat of starvation. Rice blast, caused by a fungus Pyricularia oryzae, has been ranked among the most threatening plant diseases of rice and it is found wherever rice is grown. All of the rice blast disease management strategies employed so far have had limited success and rice blast has never been eliminated from rice fields. Hence, there is a need to look for the best remedy in terms of effectiveness, sustainability, and organic nature of the method. This study was aimed at determining the plant growth-promoting and fungicidal effects of a mixture of Piper caninum and Piper betle var. Nigra leaves extracts and rhizobacteria. Gas chromatography–mass spectrophotometry (GC-MS) analysis of a mixture of leaves extracts of these plants revealed the presence of new bioactive compounds such as alpha.-gurjunene, gamma.-terpinene, and ethyl 5-formyl 3-(2-ethoxycarbonyl) in a mixture of leaves extracts of P. caninum and P. betle var. Nigra. The mixture of these extracts reduced the intensity of blast disease, inhibited P. oryzae, and improved the growth, yield, and quality of Bali rice. All treatments comprising of different concentrations of a mixture of leaves extracts of P. caninum and P. betle var. Nigra plus rhizobacteria exhibited biocontrol and bioefficacy. However, a 2% concentration of a mixture of these leaves extracts with plant growth-promoting rhizobacteria (PGPR) exhibited potent inhibition of growth of P. oryzae, a significant reduction in the intensity of blast disease, and a maximum increase in growth, yield, and quality of Bali rice. In the 15th week, the intensity of blast disease decreased from 80.18% to 7.90%. The mixture of leaves extract + PGPR also improved the height of the plant, the number of tillers, number of leaves, number of grains per panicle, number of heads per panicle, and the full-grain weight per clump. Applications of various concentrations of a mixture of leaves extracts + PGPR resulted in improvement in the potential yield of rice, however, the application of 2% extracts + PGPR gave the highest potential yield of 5.61 tha−1 compared to the low yields in the control and other treatments. The high grain yield observed with the treatment was caused by the low intensity of blast disease. This treatment also strengthened the stem and prevented the drooping of the plant and improved the quality of rice grain.


Author(s):  
Haresh S. Kalasariya ◽  
Nikunj B. Patel ◽  
Ankita Jain ◽  
Nayan D. Prajapati ◽  
Richa N. Patel

The modern agricultural sector is mainly dependent on synthetic fertilizer for enhancing the growth of crop improvements but a burden of inorganic and chemical-based fertilizer currently created a serious threat to human health as well as the soil environment. Fertilizer research is therefore focusing on an alternative to chemical fertilizer by exploiting natural sources such as marine macroalgae or seaweed. The use of seaweed will be an eco-friendlier approach to sustainable agriculture. Marine macroalgae or seaweed widely applicable in plant growth enhancements due to the presence of biological active phycocompounds such as proteins, phenolic compounds, amino acids, polysaccharides, plant-growth-promoting hormones, and some growth factors, etc. Several research studies have been carried out on the applicability of seaweed or the effect of marine algae or its components on plants and its quality. These types of constituents play their role in improving the morphological as well as biochemical characteristics of plants. The present review study focuses on the applicability of marine macroalgae as a biofertilizer or plant growth stimulator in agricultural applications. This study further helps to improve the nutritional quality of crops which prove to be useful in further investigations and applications. KEYWORDS: Seaweed, Marine Macroalgae, Biofertilizer, Growth stimulator, Agriculture


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 179 ◽  
Author(s):  
Alawiye ◽  
Babalola

Bacteria play a vital role in the quality of soil, health, and the production of plants. This has led to several studies in understanding the diversity and structure in the plant rhizosphere. Over the years, there have been overwhelming advances in molecular biology which have led to the development of omics techniques which utilize RNA, DNA, or proteins as biomolecules; these have been gainfully used in plant–microbe interactions. The bacterial community found in the rhizosphere is known for its colonization around the roots due to availability of nutrients, and composition, and it affects the plant growth directly or indirectly. Metabolic fingerprinting enables a snapshot of the metabolic composition at a given time. We review metabolites with ample information on their benefit to plants and which are found in rhizobacteria such as Pseudomonas spp. and Bacillus spp. Exploring plant-growth-promoting rhizobacteria using omics techniques can be a true success story for agricultural sustainability.


Sign in / Sign up

Export Citation Format

Share Document