Combined foliar-applied L-glutamic acid, nitrogen, and potassium improve plant growth, physio-chemical attributes, minerals, and longevity of gerbera (Gerbera jamesonii)

2021 ◽  
pp. 1-12
Author(s):  
S. R. Farahmandi ◽  
S. Samavat ◽  
M. Mostafavi ◽  
A. Mohammadi Torkashvand ◽  
Sepideh Kalate Jari
Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 791 ◽  
Author(s):  
Zubair Aslam ◽  
Safdar Bashir ◽  
Waseem Hassan ◽  
Korkmaz Bellitürk ◽  
Niaz Ahmad ◽  
...  

The present study was conducted to explore the role of different types of vermicomposts (VCs) prepared from different substrates to improve soil health (physical and chemical properties) and wheat plant growth under field conditions. Different combinations of vermicompost prepared from different substrates (cow dung, paper waste, and rice straw) and inorganic fertilizers were applied in soil using wheat as a test plant. The impact of three different VCs on physico-chemical characteristics and nutrient availability in soil was evaluated to examine their efficacy in combination with chemical fertilizers. Temporal trends in vermicomposting treatments at various stages showed significant improvement in physico-chemical attributes of the VCs substrates. All the plant physiological attributes showed significant response where N:P:K 100:50:50 kg ha−1 + 10 t ha−1 cow dung vermicompost was applied. In addition, post-harvest analysis of soil not only revealed that different combinations of the vermicomposting treatments improved the soil health by improving the physico-chemical attributes of the soil. Conclusively, application of cow dung vermicompost along with recommended NPK not only improved crop yield, soil health, reduced insect (aphid) infestation but also fortified grains with Zn and Fe.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lei Zhang ◽  
Xueming Yang ◽  
Decai Gao ◽  
Lingli Wang ◽  
Jie Li ◽  
...  

2005 ◽  
Vol 15 (1) ◽  
pp. 58-60 ◽  
Author(s):  
Kimberly K. Moore

The ornamental horticulture industry uses a variety of materials as ingredients in growing substrates for many ornamental plants. There are many attributes that make growing substrates effective, including good aeration and drainage, availability at an acceptable price, and chemical attributes conducive for plant growth. In recent years there has been a trend in which more traditional organic components, such as Canadian sphagnum peat, have been partially replaced by an increasing array of waste-product compost. Plant response to increasing quantities of compost in the potting mix, and to different types of compost are variable. This paper reviews some important issues in the utilization of urban waste compost products.


2020 ◽  
Vol 21 (23) ◽  
pp. 9183
Author(s):  
Minmin Wang ◽  
Yanchen Tian ◽  
Chao Han ◽  
Chuanen Zhou ◽  
Ming-Yi Bai ◽  
...  

The PACLOBUTRAZOL-RESISTANCE (PRE) gene family encodes a group of atypical helix-loop-helix (HLH) proteins that act as the major hub integrating a wide range of environmental and hormonal signals to regulate plant growth and development. PRE1, as a positive regulator of cell elongation, activates HBI1 DNA binding by sequestering its inhibitor IBH1. Furthermore, PRE1 can be phosphorylated at Ser-46 and Ser-67, but how this phosphorylation regulates the functions of PRE1 remains unclear. Here, we used a phospho-mutant activity assay to reveal that the phosphorylation at Ser-67 negatively regulates the functions of PRE1 on cell elongation. Both of mutations of serine 46, either to phospho-dead alanine or phospho-mimicking glutamic acid, had no significant effects on the functions of PRE1. However, the mutation of serine 67 to glutamic acid (PRE1S67E-Ox), but not alanine (PRE1S67A-Ox), significantly reduced the promoting effects of PRE1 on cell elongation. The mutation of Ser-67 to Glu-67 impaired the interaction of PRE1 with IBH1 and resulted in PRE1 failing to inhibit the interaction between IBH1 and HBI1, losing the ability to induce the expression of the subsequent cell elongation-related genes. Furthermore, we showed that PRE1-Ox and PRE1S67A-Ox both suppressed but PRE1S67E-Ox had no strong effects on the dwarf phenotypes of IBH1-Ox. Our study demonstrated that the PRE1 activity is negatively regulated by the phosphorylation at Ser-67.


2020 ◽  
Vol 43 ◽  
pp. e45075
Author(s):  
Hailson Alves Ferreira Preston ◽  
Clistenes Williams Araújo do Nascimento ◽  
Welka Preston ◽  
Glauber Henrique de Souza Nunes ◽  
Francisco Leandro Costa Loureiro ◽  
...  

Melon bacterial fruit blotch (BFB) is the major bacterial melon disease in Northeastern Brazil. We evaluated the effects of applying a silicon (Si) slag on BFB suppressiveness in two melons cultivars as well as in soil chemical attributes and plant growth and nutrition. Slag was incorporated into the soil at concentrations equivalent to 0.00, 0.12, 0.24, 0.47, 0.71, and 1.41 g kg-1 of silicon. Plants were inoculated with Acidovorax citrulli 20 days after emergence. Results showed that amending the soil with Si slag improved the resistance of two melon cultivars against bacterial fruit blotch. Such an effect is probably related not only to the Si uptake by plants but also to changes in soil characteristics and improvement in plant nutrition. Both hybrid cultivars (AF4945 and Medellín) increased biomass, nutrient and Si accumulation as a function of Si doses applied to soil. According to Si concentration and Si to Ca ratio in plant tissue, both cultivars are regarded as intermediary Si-accumulators. We also observed that an intermediate dose of Si (0.71 g kg-1) posed better results on controlling melon bacterial fruit blotch than the highest dose tested


2013 ◽  
Vol 7 (1) ◽  
pp. 50-58
Author(s):  
Sattar Abdullah Shlahi ◽  
Duha Mysire Majeed ◽  
Salah Mohammed Hasan

Gerbera plant Gerbera jamesonii is classified according to the flower colors to four strains: white, yellow, pink and purple. Capitulum and scape explants were tested on MS medium in half or full salts strength, supplemented with different combinations of plant growth regulators cytokinins kintin (Kin) and benzel adinine (BA), auxin indolacitic acid (IAA). Results revealed that the capitulum showed better response to shoot formation 64.13% whereas the scape did not show response. Yellow flowers showed higher response in shoot formation 37.5% than other strains. growth regulators combination BA and IAA (3.0 + 0.1) mg/L respectively showed better response for shoot multiplication. Auxin IBA (0.5) mg/ L gave better rooting percentage 60% than other auxins IAA and NAA all concentrations. The acclimatization of the gerbera was 78.59%.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Haizhen Ma ◽  
Panpan Li ◽  
Xingwang Liu ◽  
Can Li ◽  
Shengkui Zhang ◽  
...  

Abstract Background Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. Results In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT–PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. Conclusions Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.


Sign in / Sign up

Export Citation Format

Share Document