Nitrogen deficiency-induced molybdenum accumulation in wheat

2022 ◽  
pp. 1-12
Author(s):  
Toshihiro Watanabe ◽  
Ryoskuke Okada ◽  
Soyoka Tokunaga ◽  
Hayato Maruyama ◽  
Masaru Urayama ◽  
...  
Keyword(s):  
2021 ◽  
Vol 22 (14) ◽  
pp. 7674
Author(s):  
Ting Liang ◽  
Zhengqing Yuan ◽  
Lu Fu ◽  
Menghan Zhu ◽  
Xiaoyun Luo ◽  
...  

Nitrogen (N) is an essential nutrient for plant growth and development. The root system architecture is a highly regulated morphological system, which is sensitive to the availability of nutrients, such as N. Phenotypic characterization of roots from LY9348 (a rice variety with high nitrogen use efficiency (NUE)) treated with 0.725 mM NH4NO3 (1/4N) was remarkable, especially primary root (PR) elongation, which was the highest. A comprehensive analysis was performed for transcriptome and proteome profiling of LY9348 roots between 1/4N and 2.9 mM NH4NO3 (1N) treatments. The results indicated 3908 differential expression genes (DEGs; 2569 upregulated and 1339 downregulated) and 411 differential abundance proteins (DAPs; 192 upregulated and 219 downregulated). Among all DAPs in the proteome, glutamine synthetase (GS2), a chloroplastic ammonium assimilation protein, was the most upregulated protein identified. The unexpected concentration of GS2 from the shoot to the root in the 1/4N treatment indicated that the presence of an alternative pathway of N assimilation regulated by GS2 in LY9348 corresponded to the low N signal, which was supported by GS enzyme activity and glutamine/glutamate (Gln/Glu) contents analysis. In addition, N transporters (NRT2.1, NRT2.2, NRT2.3, NRT2.4, NAR2.1, AMT1.3, AMT1.2, and putative AMT3.3) and N assimilators (NR2, GS1;1, GS1;2, GS1;3, NADH-GOGAT2, and AS2) were significantly induced during the long-term N-deficiency response at the transcription level (14 days). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that phenylpropanoid biosynthesis and glutathione metabolism were significantly modulated by N deficiency. Notably, many transcription factors and plant hormones were found to participate in root morphological adaptation. In conclusion, our study provides valuable information to further understand the response of rice roots to N-deficiency stress.


2020 ◽  
Vol 21 (6) ◽  
pp. 2119 ◽  
Author(s):  
Mohammad Rezaul Karim ◽  
Ruonan Wang ◽  
Lu Zheng ◽  
Xiaoying Dong ◽  
Renfang Shen ◽  
...  

Nitrogen deficiency usually occurs along with aluminum toxicity in acidic soil, which is one of the major constraints for wheat production worldwide. In order to compare adaptive processes to N deficiency with different Al-tolerant wheat cultivars, we chose Atlas 66 and Scout 66 to comprehensively analyze the physiological responses to N deficiency, coupled with label-free mass spectrometry-based proteomics analysis. Results showed that both cultivars were comparable in most physiological indexes under N deficient conditions. However, the chlorophyll content in Scout 66 was higher than that of Atlas 66 under N deficiency. Further proteomic analysis identified 5592 and 5496 proteins in the leaves of Atlas 66 and Scout 66, respectively, of which 658 and 734 proteins were shown to significantly change in abundance upon N deficiency, respectively. The majority of the differentially expressed proteins were involved in cellular N compound metabolic process, photosynthesis, etc. Moreover, tetrapyrrole synthesis and sulfate assimilation were particularly enriched in Scout 66. Our findings provide evidence towards a better understanding of genotype-dependent responses under N deficiency which could help us to develop N efficient cultivars to various soil types.


Pedosphere ◽  
2010 ◽  
Vol 20 (1) ◽  
pp. 15-22 ◽  
Author(s):  
J. ZHANG ◽  
A.M. BLACKMER ◽  
P.M. KYVERYGA ◽  
M.J. GLADY ◽  
T.M. BLACKMER

2011 ◽  
Vol 130 (1) ◽  
pp. 325-334 ◽  
Author(s):  
Lydie Huché-Thélier ◽  
Rachid Boumaza ◽  
Sabine Demotes-Mainard ◽  
Angélique Canet ◽  
Ronan Symoneaux ◽  
...  

2016 ◽  
Vol 108 ◽  
pp. 222-230 ◽  
Author(s):  
Xue Zhang ◽  
Hong Jun Yu ◽  
Xiao Meng Zhang ◽  
Xue Yong Yang ◽  
Wen Chao Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document