Relationship between wheat grain protein yield and grain yield, plant growth, and nutrition at anthesis

1991 ◽  
Vol 14 (12) ◽  
pp. 1297-1306 ◽  
Author(s):  
I. M. Martin del Molino
1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


jpa ◽  
1990 ◽  
Vol 3 (3) ◽  
pp. 324-328 ◽  
Author(s):  
B. Vaughan ◽  
D. G. Westfall ◽  
K. A. Barbarick

2000 ◽  
Vol 51 (6) ◽  
pp. 665 ◽  
Author(s):  
M Koç ◽  
C. Barutçular ◽  
N. Zencirci

High grain protein in durum wheat [Triticum turgidum ssp. turgidum L. conv. Durum (Desf.)] is one of the main goals of breeding programs. Landraces may be very useful germplasm for achieving this goal. To examine their potential as a source of high grain protein content, 11 genotypes, including 7 landraces, were evaluated in 8 environments. Environment, genotype, and the interaction of the two (G E) significantly influenced the variation in grain yield, grain protein content, and grain protein yield. The environmental effect was the strongest, mostly due to differences in water supply. Grain yields of the modern genotypes were higher than those of landraces. Yields of the modern genotypes tended to respond more strongly to the higher yielding environments, but they varied more than the yields of landraces. With the exception of VK.85.18, the grain protein content of the high-yielding genotypes was almost as high as that of the best landraces. Moreover, grain protein content of these bred genotypes tended to respond more strongly to the higher protein environments. Differences in grain protein yield were closely related to the differences in grain yield. The results indicate that it is possible to improve grain protein content without grain yield being adversely affected. The results also indicate that potential gene sources should be compared over a number of environments before they can be used as breeding material or as crop varieties producing high grain protein yields.


2003 ◽  
Vol 34 (13-14) ◽  
pp. 1837-1852 ◽  
Author(s):  
K. W. Freeman ◽  
W. R. Raun ◽  
G. V. Johnson ◽  
R. W. Mullen ◽  
M. L. Stone ◽  
...  

2018 ◽  
Vol 10 (6) ◽  
pp. 930 ◽  
Author(s):  
Francelino A. Rodrigues ◽  
Gerald Blasch ◽  
Pierre BlasDefournych ◽  
J. Ivan Ortiz-Monasterio ◽  
Urs Schulthess ◽  
...  

2004 ◽  
Vol 55 (7) ◽  
pp. 775 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral ◽  
J. M. Virgona ◽  
A. D. Swan

The effect of using 4 perennial grasses or lucerne (Medicago sativa L.) in the pasture phase on subsequent wheat grain yield, protein, and grain hardness was investigated at 2 sites (Kamarah and Junee) in the south-eastern Australian cereal belt. The 6 perennial treatments were 5 mixtures of subterranean clover (Trifolium subterraneum L.), with one of lucerne, phalaris (Phalaris aquatica L.), cocksfoot (Dactylis glomerata L), wallaby grass (Austrodanthonia richardsonii (Cashm.) H.P. Linder), or lovegrass (Eragrostis curvula (Schrader) Nees cv. Consol), or one mixture of cocksfoot, phalaris, and lucerne. The results were compared with wheat after one of 3 annual pastures consisting of either pure subterranean clover, subterranean clover with annual volunteer broadleaf and grass weeds, or yellow serradella (Ornithopus compressus L.). The duration of the pasture phase was 3 years at the drier Kamarah site (av. annual rainfall 430 mm) and 4 years at Junee (550 mm). The effect of time of removal of the pastures in the year prior to cropping (28 August–3 September or 6–7 November) and the effect of nitrogen (N) fertiliser application were also examined. In the absence of applied N, wheat grain yields at Kamarah were highest (4.7–4.9 t/ha) and grain protein lowest (10.3–11.1%) following phalaris, wallaby grass, and cocksfoot. Grain protein levels were highest (12.9–13.9%) in wheat following the 3 annual legume swards at both sites. Previous pasture type had no effect on wheat yields at the Junee site. Wheat grain protein and total N taken up by the crop were positively related to available soil N to 100 cm measured at sowing at both sites. Grain protein was inversely related to grain yield at both sites where additional N fertiliser was added, but not in the absence of fertiliser N. There was a positive response in grain protein to delayed time of pasture removal in second year wheat at Junee. The application of additional N fertiliser increased grain protein of wheat following all 9 pasture types at the drier Kamarah site, but at the Junee site there was only a positive grain protein response following phalaris, cocksfoot, and wallaby grass. Early removal of the pasture prior to cropping increased soil water (10–130 cm) at sowing by 18 mm, delayed wheat senescence, and increased crop yield by 11% (0.44 t/ha) at the drier Kamarah site. Early removal of the pasture at Junee increased soil water by 29 mm, crop yields by 2% (0.14 t/ha), and increased grain protein in wheat following cocksfoot, wallaby grass, and phalaris, but not following the 3 annual legume treatments. The study demonstrated that perennial grasses can be successfully incorporated into phased rotations with wheat without affecting grain yield, but protein levels may be lower and timing of pasture removal will be important to limit the effect of water deficits on grain yield.


Sign in / Sign up

Export Citation Format

Share Document