Yield and grain protein of wheat following phased perennial grass, lucerne, and annual pastures

2004 ◽  
Vol 55 (7) ◽  
pp. 775 ◽  
Author(s):  
B. S. Dear ◽  
G. A. Sandral ◽  
J. M. Virgona ◽  
A. D. Swan

The effect of using 4 perennial grasses or lucerne (Medicago sativa L.) in the pasture phase on subsequent wheat grain yield, protein, and grain hardness was investigated at 2 sites (Kamarah and Junee) in the south-eastern Australian cereal belt. The 6 perennial treatments were 5 mixtures of subterranean clover (Trifolium subterraneum L.), with one of lucerne, phalaris (Phalaris aquatica L.), cocksfoot (Dactylis glomerata L), wallaby grass (Austrodanthonia richardsonii (Cashm.) H.P. Linder), or lovegrass (Eragrostis curvula (Schrader) Nees cv. Consol), or one mixture of cocksfoot, phalaris, and lucerne. The results were compared with wheat after one of 3 annual pastures consisting of either pure subterranean clover, subterranean clover with annual volunteer broadleaf and grass weeds, or yellow serradella (Ornithopus compressus L.). The duration of the pasture phase was 3 years at the drier Kamarah site (av. annual rainfall 430 mm) and 4 years at Junee (550 mm). The effect of time of removal of the pastures in the year prior to cropping (28 August–3 September or 6–7 November) and the effect of nitrogen (N) fertiliser application were also examined. In the absence of applied N, wheat grain yields at Kamarah were highest (4.7–4.9 t/ha) and grain protein lowest (10.3–11.1%) following phalaris, wallaby grass, and cocksfoot. Grain protein levels were highest (12.9–13.9%) in wheat following the 3 annual legume swards at both sites. Previous pasture type had no effect on wheat yields at the Junee site. Wheat grain protein and total N taken up by the crop were positively related to available soil N to 100 cm measured at sowing at both sites. Grain protein was inversely related to grain yield at both sites where additional N fertiliser was added, but not in the absence of fertiliser N. There was a positive response in grain protein to delayed time of pasture removal in second year wheat at Junee. The application of additional N fertiliser increased grain protein of wheat following all 9 pasture types at the drier Kamarah site, but at the Junee site there was only a positive grain protein response following phalaris, cocksfoot, and wallaby grass. Early removal of the pasture prior to cropping increased soil water (10–130 cm) at sowing by 18 mm, delayed wheat senescence, and increased crop yield by 11% (0.44 t/ha) at the drier Kamarah site. Early removal of the pasture at Junee increased soil water by 29 mm, crop yields by 2% (0.14 t/ha), and increased grain protein in wheat following cocksfoot, wallaby grass, and phalaris, but not following the 3 annual legume treatments. The study demonstrated that perennial grasses can be successfully incorporated into phased rotations with wheat without affecting grain yield, but protein levels may be lower and timing of pasture removal will be important to limit the effect of water deficits on grain yield.

1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


1988 ◽  
Vol 28 (4) ◽  
pp. 499 ◽  
Author(s):  
RJ Martin ◽  
MG McMillan ◽  
JB Cook

A survey of management practices on wheat farms in northern New South Wales was carried out on 50 farms between 1983 and 1985 and was supplemented by a questionnaire mailed to 750 growers in 1985. Information was collected on crop rotation, tillage practice, fertiliser use and weed control practices. Data were collected from 1 paddock on each farm and included: wheat grain yield and quality, available soil water and nutrients at sowing, wild oat density, and incidence of soil-borne diseases. The 3-year average grain yield in survey paddocks was 2.2 t/ha. Multiple regression analysis was used to identify factors affecting grain yield and protein in 1985. Of the variation in wheat grain yield, 74% was explained by variation in available soil water at sowing, available soil nitrate at sowing, sowing date and wild oat density. Grain protein content declined with increasing available soil water and phosphate at sowing and with earlier sowing, but increased with available nitrate at sowing. Agronomic practices aimed at maximising wheat grain yield, in the presence of a deficiency ofavailable soil nitrate, are likely to result in a reduction of grain protein content. Likewise, responses to application of nitrogenous fertiliser are likely to be inversely related to available soil water at sowing. The mean gross margin for 1984 and 1985, based on $100/t of wheat grain, was $128. The mean gross margin for the least profitable 20% of paddocks was $37, and $253 for the top 20%. New varieties of wheat and herbicides were readily adopted by farmers. On the other hand, adoption of nitrogenous fertiliser use was slow, considering the widespread and long-standing deficiencies of nitrogen in cropping soils of the region. Crop rotation and tillage practices have changed only marginally since the late 1940s. The results of this survey indicate that the usefulness of soil testing for predicting fertiliser requirements could be improved by taking into account levels of available soil water, weed competition and sowing date and by using multiple regression analysis.


jpa ◽  
1990 ◽  
Vol 3 (3) ◽  
pp. 324-328 ◽  
Author(s):  
B. Vaughan ◽  
D. G. Westfall ◽  
K. A. Barbarick

2003 ◽  
Vol 43 (8) ◽  
pp. 785 ◽  
Author(s):  
D. F. Chapman ◽  
M. R. McCaskill ◽  
P. E. Quigley ◽  
A. N. Thompson ◽  
J. F. Graham ◽  
...  

The effects of combinations of different fertiliser rates and grazing methods applied to phalaris-based pastures on an acid, saline, yellow sodosol on the Dundas Tablelands of western Victoria (mean annual rainfall 623�mm) were measured from 1997 to 2000. The objective was to help identify management systems that improve phalaris growth and persistence, water use, and animal production, and thereby the productivity and sustainability of grazing systems. Pastures were either set stocked with low [mean 6.4 kg phosphorus (P)/ha.year] or high (mean 25 kg P/ha.year) fertiliser rates, or rotationally grazed with high fertiliser (mean 25 kg P/ha.year). Rotational grazing was implemented as either a simple '4-paddock' system (fixed rotation length), or a more intensive system where rotation length varied with pasture growth rate. Unreplicated paddocks of volunteer pasture (dominated by onion grass and annual grass weeds) receiving an average of 8 kg P/ha.year were also monitored. All treatments were stocked with spring-lambing Merino ewes. Stocking rate was an emergent property of each treatment, and was driven by pasture quality and availability. Total pasture herbage accumulation ranged from 7150 to 9750 kg DM/ha.year and was significantly lower on the set-stocked, low-fertility treatment than on all other treatments. A significant treatment.day effect in the spline analysis of herbage mass was explained by a trend toward higher pasture mass in the rotationally grazed treatments than set-stocked treatments from the break of season until mid-spring. Rotational grazing led to significantly higher phalaris herbage accumulation than set stocking (mean 3680 v. 2120 kg DM/ha.year), but significantly lower subterranean clover herbage accumulation (1440 v. 2490 kg DM/ha.year). Despite the stronger growth of deep-rooted phalaris in the rotationally grazed treatments, maximum soil water deficits at the end of summer differed only slightly between treatments, with the difference between driest and wettest treatments amounting to only 14 mm. Summer growth of phalaris was apparently insufficient to generate significant differences in soil water extraction at depth, even when phalaris content was increased by rotational grazing, and re-wetting of the soil profile occurred at a similar rate for all treatments. Rotationally grazed treatments supported higher stocking rates than set-stocked treatments at high fertiliser rates (mean 14.9 v. 13.7 ewes/ha), but apparent losses in pasture feeding value due to lower legume content under rotational grazing meant that there were few significant differences between treatments in lamb production per hectare. The experiment showed that grazing method can have a substantial and rapid effect on pasture botanical composition. There are clear opportunities for producers to use temporal and spatial combinations of set stocking and rotational grazing to manipulate herbage mass and pasture composition within broad target ranges for achieving both animal production (e.g. high per-head animal performance) and sustainability (e.g. persistence of perennial grasses) objectives. Rigid application of either set stocking or rotational grazing imposes limitations on both pasture and animal production, and neither grazing method will optimise system performance under all conditions. The experiment also demonstrated that management and land-use changes that have much greater potential to increase water use than those examined here will be needed to ensure the sustainability of pasture systems in the high rainfall zone of western Victoria.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 155 ◽  
Author(s):  
Jinfeng Ding ◽  
Fujian Li ◽  
Tao Le ◽  
Peng Wu ◽  
Min Zhu ◽  
...  

In the rice-wheat rotation system, conventional culturing of high yield rice results in poor soil conditions and excessive residues, which negatively affect wheat growth. Tillage and nitrogen (N) use are being sought to address this problem. In order to propose a suitable tillage method and corresponding N management strategy, the influence of three tillage methods (i.e., plow tillage followed by rotary tillage (PR), rotary tillage twice (RR), and no-tillage (NT)) and nine forms of N management strategies (i.e., three total N rates × three N-splitting schemes) were investigated in a field experiment from 2016 to 2017 (2017) and 2017 to 2018 (2018), using grain yield, grain protein content (GPC), N uptake efficiency (NUpE), and net returns as evaluation indexes. Grain yield, GPC, and net returns were lower in 2017 than 2018, likely as a result of weak seedling growth caused by high soil moisture before and after seeding. In 2017, NT achieved higher grain yield, NUpE, and net returns compared to PR or RR, while grain yield and net returns were higher under tillage in 2018, especially PR. Increased total N rates (210–270 kg ha−1) promoted all evaluation indexes, but suitable timing and corresponding rates of N application are dependent on the environment. These results indicate that the combination of NT and applying N at lower rates and only a few times (i.e., 168 and 72 kg ha−1 applied at pre-sowing and when flag leaves are visible) when the soil is not suitable for tillage is the best method for cutting costs and improving benefits. Under suitable conditions for tillage, PR and intensive management strategies (i.e., 135, 27, 54, and 54 kg ha−1 applied at pre-sowing, four-leaf, jointing, and booting, respectively) could be adopted to increase overall yield, quality, and benefits.


1997 ◽  
Vol 48 (5) ◽  
pp. 635 ◽  
Author(s):  
C. J. Birch ◽  
S. Fukai ◽  
I. J. Broad

The effect of nitrogen application on the grain yield and grain protein concentration of barley was studied in 13 field trials covering a wide range of soil N conditions over 4 years at locations in south-eastern Queensland. The main objectives of the study were to quantify the response of barley to N application rate over a range of environmental conditions, and to explain the response in terms of soil mineral N, total N uptake, and N distribution in the plants. Barley made efficient use of N (60 kg grain/kg N) until grain yield reached 90% of maximum yield. Grain protein concentration did not increase to levels unacceptable for malting purposes until grain yield exceeded 85–90% of maximum yield. Nitrogen harvest index was generally high (above 0·75), and did not decrease until the total N supply exceeded that necessary for maximum grain yield. Rates of application of N for malting barley should be determined on the basis of soil analysis (nitrate-N) to 1 m depth and 90% of expected maximum grain yield, assuming that 17 kg N is taken up per tonne of grain produced. It can further be assumed that the crop makes full use of the nitrate N to 1 m present at planting, provided the soil is moist to 1 m. A framework relating grain yield to total N uptake, N harvest index, and grain N concentration is presented. Further, total N uptake of fertilised barley is related to N uptake without fertiliser, fertiliser application rate, and apparent N recovery. The findings reported here will be useful in the development of barley simulation models and decision support packages that can be used to aid N management.


1992 ◽  
Vol 32 (3) ◽  
pp. 383 ◽  
Author(s):  
AD Doyle ◽  
CC Leckie

Grain yield, protein, and nitrogen uptake responses are reported for 6 wheat fertiliser experiments in northern New South Wales which were representative of sites that were highly responsive, moderately responsive, and non-responsive to nitrogen (N) fertiliser applied at sowing. Apparent recoveries of applied N of 33-57% in the grain were recorded where grain yield was steeply increasing in response to additional applied N. Where yield increases were smaller in response to increments of N fertiliser, N recovery was 22-3096, but where further N application increased grain protein content but not grain yield, apparent recovery of additional fertiliser N fell below 20%. Apparent recovery was less than 10% in experiments where there was no yield response to N fertiliser. The implications for fertiliser recommendations are discussed relative to potential premium payment for wheat protein levels. It was concluded that established premium payments are too low to make N application an economic proposition to increase grain protein levels in the absence of grain yield responses.


2003 ◽  
Vol 34 (13-14) ◽  
pp. 1837-1852 ◽  
Author(s):  
K. W. Freeman ◽  
W. R. Raun ◽  
G. V. Johnson ◽  
R. W. Mullen ◽  
M. L. Stone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document