Comparison of Low Pressure and Medium Pressure UV Lamps for UV/H2O2Treatment of Natural Waters Containing Micro Pollutants

2010 ◽  
Vol 32 (5) ◽  
pp. 329-337 ◽  
Author(s):  
Guus F. IJpelaar ◽  
Danny J.H. Harmsen ◽  
Erwin F. Beerendonk ◽  
Robin C. van Leerdam ◽  
Debbie H. Metz ◽  
...  
2007 ◽  
Vol 74 (1) ◽  
pp. 327-328 ◽  
Author(s):  
Jiangyong Hu ◽  
Puay Hoon Quek

ABSTRACT Photolyase activity following exposure to low-pressure (LP) and medium-pressure (MP) UV lamps was evaluated. MP UV irradiation resulted in a greater reduction in photolyase activity than LP UV radiation. The results suggest that oxidation of the flavin adenine dinucleotide in photolyase may have caused the decrease in activity.


Chemosphere ◽  
2017 ◽  
Vol 183 ◽  
pp. 582-588 ◽  
Author(s):  
Jingyun Fang ◽  
Quan Zhao ◽  
Chihhao Fan ◽  
Chii Shang ◽  
Yun Fu ◽  
...  

ROTASI ◽  
2016 ◽  
Vol 18 (2) ◽  
pp. 44
Author(s):  
Norman Iskandar ◽  
Ardha Ridho Pangeran

Oil pump steam turbine (OPST) adalah sebuah turbin uap jenis impuls yang digerakan oleh medium pressure steam (MPS) dengan tekanan 15–21 kg/cm2G dan temperatur kerja 250–370 oC. Uap ekstrasi dari turbin uap adalah low pressure steam (LPS) dengan tekanan 3.8–6.3 kg/ cm2G. Dalam proses perawatannya, OPST diinspeksi setiap 2 minggu sekali dengan melihat kondisi oli, trending getaran, dan putaran poros turbin. Pada saat operasi OPST mengalami kenaikan vibrasi yang melebihi batas toleransi (vs 2.82 mm/s) dan keruhnya oli pelumasan OPST. Dalam hal ini dilakukan sebuah penelitian guna mengetahui indikasi kerusakan OPST dan analisis perbaikan yang tepat guna mengembalikan performa dari OPST. Dalam mengidentifikasi kerusakan tersebut metode yang dilakukan adalah analisis trending spektrum menggunakan software omnitrend yang nilainya akan dibandingkan dengan hasil perhitungan bearing. Analisis tersebut menghasilkan bahwa terjadi vibrasi 1X RPM dikarenakan kerusakan pada ball bearing yang diakibatkan oleh pelumas bearing yang sudah keruh karena tercampur air. Untuk mengetahui masuknya air ke dalam oil chamber dilakukan dua cara yaitu percobaan hydrotest dan pengukuran clearances carbon ring seals. Setelah dilakukan dua percobaan tersebut didapatkan hasil penyebab masuknya air ke oil chamber karena overclearances pada carbon ring seals (vs 0.120-0.145 mm). Masalah yang terjadi ini mengakibatkan uap masuk ke penampungan oli sehingga pelumasan pada bearing tidak berjalan dengan baik sehingga terjadi kerusakan pada bearing. Setelah teridentifikasi kerusakannya, dilakukan pergantian komponen bearing inboard dan bearing outboard serta laping split face pada carbon ring seals. Setelah mengalami perbaikan vibrasi pada OPST kembali normal dari 3.72 mm/s menjadi 0.93 mm/s.


2010 ◽  
Vol 77 (3) ◽  
pp. 1145-1147 ◽  
Author(s):  
Anne C. Eischeid ◽  
Karl G. Linden

ABSTRACTAdenoviruses are resistant to monochromatic, low-pressure (LP) UV disinfection—but have been shown to be susceptible to inactivation by polychromatic, medium-pressure (MP) UV—when assayed using cell culture infectivity. One possible explanation for the difference between UV lamp types is that the additional UV wavelengths emitted by MP UV enable it to cause greater damage to viral proteins than LP UV. The objective of this study was to examine protein damage in adenoviruses treated with LP and MP UV. Results show that MP UV is more effective at damaging viral proteins at high UV doses, though LP UV caused some damage as well. To our knowledge, this study is the first to investigate protein damage in UV-treated adenovirus, and the overview presented here is expected to provide a basis for further, more detailed work.


2013 ◽  
Vol 325-326 ◽  
pp. 409-412
Author(s):  
Hao Jun Zhang ◽  
Qiu Yi Han ◽  
Shan Duan Zhang

High output low pressure mercury (LPM) discharge UV lamps have been briefly introduced. In order to measure the 254 nm radiant efficiency simply and preciously, Keitz formula was used and its advantage was illustrated. The LPM lamps had outer diameter of 19 mm (T6). The buffer gases are neon (65%) and argon (35%) with total pressure 1-10 Torr (133-1333 Pa). The lamps were operated with cold spot temperatures from 20°C to 80°C and discharge current from 0.8 A to 2.0 A. The electric field, input power, 254 nm UV irradiance and irradiance of other Hg lines from 265 to 579 nm in positive column were measured. The radiant power of each wavelength can be calibrated according to the 254 nm output and the Keitz formula. It was shown that the radiant efficiency of 254 nm can reach a maximum of above 40% at cold spot temperature 45-47 °C and current 1.6 A for filling pressure less than 3 Torr. The optimal mercury vapor pressure was 1.2 to 1.4 Pa. The output percentage of other Hg lines was below 5%. With the decrease of buffer gas pressure, the 254 nm radiant efficiency increased obviously.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Mariola Rajca

This study examined the removal of natural organic substances (humic acids-HA, and fulvic acids-FA) from model solutions using photocatalysis and ultrafiltration. The effect of two nano titanium dioxide types (P25 and P90) with different active surface areas and two UV lamps (low-pressure and medium-pressure) on the effectiveness of FA and HA removal during photocatalysis was tested. An integrated photocatalytic + ultrafiltration system was also analyzed to determine the effectiveness of FA and HA removal and the changes in the relative permeate flux (Ultrafiltration Membrane Fouling-UF). We observed that photocatalysis using the P90 nano titanium dioxide was more efficient than the P25 due to the larger surface area (2×). The decomposition of organic substances proceeded efficiently up to 30 min of solution exposure, and the use of a medium-pressure lamp accelerated compound decomposition relative to the low-pressure lamp. The applied photocatalysis + ultrafiltration system was characterized by a high degree of FA removal while improved hydraulic efficiency was observed during ultrafiltration.


2001 ◽  
Vol 43 (4) ◽  
pp. 191-197 ◽  
Author(s):  
Ben F. Kalisvaart

Ultraviolet (UV) light has become widely accepted for the disinfection of potable water, process water and wastewater as an alternative to chlorination. To avoid the failure of a UV disinfection system due to the recovery of micro-organisms, certain additional wavelengths in the UV area are emitted by newly developed UV lamps. To reduce the chance of microbial recovery after ultraviolet irradiation, damage must be inflicted in as many areas of the micro-organism as possible. The effective killing of micro-organisms by improved polychromatic medium pressure UV lamps is due to their exceptionally high UV energy output at specific wavelengths across a broad section of the UV spectrum. The combination of these properties results in several different lethal effects in small and large micro-organisms. Important biological molecules other than DNA are likely to be damaged, which helps to prevent the recovery of irradiated micro-organisms. Absorption line spectra of absorbing nucleotide bases, DNA and other biological molecules, including proteins and enzymes, show how effective UV light can be. Recent findings on the biological effects of short wavelengths on Bacillus subtilis, Cryptosporidium parvum and Escherichia coli confirm the effect of short wavelengths. Practical comparisons with conventional low pressure UV lamps at equal UV dosages show better killing rates from polychromatic medium pressure lamps, without formation of disinfection byproducts (DBPs).


2004 ◽  
Vol 50 (6) ◽  
pp. 337-344 ◽  
Author(s):  
B.F. Kalisvaart

Ultraviolet (UV) light has become widely accepted as an alternative to chlorination or ozonation for wastewater disinfection. There are now over 2,000 wastewater treatment plants worldwide using either low- or medium-pressure UV technology. Recent studies investigating UV lamp technology, configuration, cleaning requirements and ageing, as well as long-term performance tests, have demonstrated beyond any doubt the effectiveness of UV in inactivating pathogens in wastewater. Research has also shown that, to ensure permanent inactivation and prevent the recovery of microorganisms following exposure to UV, a broad, “polychromatic” spectrum of UV wavelengths is necessary. These wavelengths inflict irreparable damage not only on cellular DNA, but on other molecules, such as enzymes, as well. Only medium-pressure UV lamps produce the necessary broad range of wavelengths; low-pressure lamps emit a single wavelength peak which only affects DNA. Polychromatic medium-pressure UV light is so effective because of the lampÕs exceptionally high UV energy output at specific wavelengths across the UV spectrum. It has been shown, for example, that pathogenic E. coli O175:H7 was able to repair the damage caused by low-pressure UV, but no repair was detected following exposure to UV from medium-pressure lamps.


Sign in / Sign up

Export Citation Format

Share Document