EFFECT OF MEDIUM PRESSURE AND LOW PRESSURE ULTRAVIOLET SYSTEMS ON THE INACTIVATION OF SELECTED BACTERIOPHAGES

2002 ◽  
Vol 2002 (1) ◽  
pp. 453-462
Author(s):  
A. Asahina ◽  
R. Fujioka ◽  
V. Moreland
Keyword(s):  
ROTASI ◽  
2016 ◽  
Vol 18 (2) ◽  
pp. 44
Author(s):  
Norman Iskandar ◽  
Ardha Ridho Pangeran

Oil pump steam turbine (OPST) adalah sebuah turbin uap jenis impuls yang digerakan oleh medium pressure steam (MPS) dengan tekanan 15–21 kg/cm2G dan temperatur kerja 250–370 oC. Uap ekstrasi dari turbin uap adalah low pressure steam (LPS) dengan tekanan 3.8–6.3 kg/ cm2G. Dalam proses perawatannya, OPST diinspeksi setiap 2 minggu sekali dengan melihat kondisi oli, trending getaran, dan putaran poros turbin. Pada saat operasi OPST mengalami kenaikan vibrasi yang melebihi batas toleransi (vs 2.82 mm/s) dan keruhnya oli pelumasan OPST. Dalam hal ini dilakukan sebuah penelitian guna mengetahui indikasi kerusakan OPST dan analisis perbaikan yang tepat guna mengembalikan performa dari OPST. Dalam mengidentifikasi kerusakan tersebut metode yang dilakukan adalah analisis trending spektrum menggunakan software omnitrend yang nilainya akan dibandingkan dengan hasil perhitungan bearing. Analisis tersebut menghasilkan bahwa terjadi vibrasi 1X RPM dikarenakan kerusakan pada ball bearing yang diakibatkan oleh pelumas bearing yang sudah keruh karena tercampur air. Untuk mengetahui masuknya air ke dalam oil chamber dilakukan dua cara yaitu percobaan hydrotest dan pengukuran clearances carbon ring seals. Setelah dilakukan dua percobaan tersebut didapatkan hasil penyebab masuknya air ke oil chamber karena overclearances pada carbon ring seals (vs 0.120-0.145 mm). Masalah yang terjadi ini mengakibatkan uap masuk ke penampungan oli sehingga pelumasan pada bearing tidak berjalan dengan baik sehingga terjadi kerusakan pada bearing. Setelah teridentifikasi kerusakannya, dilakukan pergantian komponen bearing inboard dan bearing outboard serta laping split face pada carbon ring seals. Setelah mengalami perbaikan vibrasi pada OPST kembali normal dari 3.72 mm/s menjadi 0.93 mm/s.


2010 ◽  
Vol 77 (3) ◽  
pp. 1145-1147 ◽  
Author(s):  
Anne C. Eischeid ◽  
Karl G. Linden

ABSTRACTAdenoviruses are resistant to monochromatic, low-pressure (LP) UV disinfection—but have been shown to be susceptible to inactivation by polychromatic, medium-pressure (MP) UV—when assayed using cell culture infectivity. One possible explanation for the difference between UV lamp types is that the additional UV wavelengths emitted by MP UV enable it to cause greater damage to viral proteins than LP UV. The objective of this study was to examine protein damage in adenoviruses treated with LP and MP UV. Results show that MP UV is more effective at damaging viral proteins at high UV doses, though LP UV caused some damage as well. To our knowledge, this study is the first to investigate protein damage in UV-treated adenovirus, and the overview presented here is expected to provide a basis for further, more detailed work.


2010 ◽  
Vol 32 (5) ◽  
pp. 329-337 ◽  
Author(s):  
Guus F. IJpelaar ◽  
Danny J.H. Harmsen ◽  
Erwin F. Beerendonk ◽  
Robin C. van Leerdam ◽  
Debbie H. Metz ◽  
...  

2007 ◽  
Vol 74 (1) ◽  
pp. 327-328 ◽  
Author(s):  
Jiangyong Hu ◽  
Puay Hoon Quek

ABSTRACT Photolyase activity following exposure to low-pressure (LP) and medium-pressure (MP) UV lamps was evaluated. MP UV irradiation resulted in a greater reduction in photolyase activity than LP UV radiation. The results suggest that oxidation of the flavin adenine dinucleotide in photolyase may have caused the decrease in activity.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Mariola Rajca

This study examined the removal of natural organic substances (humic acids-HA, and fulvic acids-FA) from model solutions using photocatalysis and ultrafiltration. The effect of two nano titanium dioxide types (P25 and P90) with different active surface areas and two UV lamps (low-pressure and medium-pressure) on the effectiveness of FA and HA removal during photocatalysis was tested. An integrated photocatalytic + ultrafiltration system was also analyzed to determine the effectiveness of FA and HA removal and the changes in the relative permeate flux (Ultrafiltration Membrane Fouling-UF). We observed that photocatalysis using the P90 nano titanium dioxide was more efficient than the P25 due to the larger surface area (2×). The decomposition of organic substances proceeded efficiently up to 30 min of solution exposure, and the use of a medium-pressure lamp accelerated compound decomposition relative to the low-pressure lamp. The applied photocatalysis + ultrafiltration system was characterized by a high degree of FA removal while improved hydraulic efficiency was observed during ultrafiltration.


2004 ◽  
Vol 50 (6) ◽  
pp. 337-344 ◽  
Author(s):  
B.F. Kalisvaart

Ultraviolet (UV) light has become widely accepted as an alternative to chlorination or ozonation for wastewater disinfection. There are now over 2,000 wastewater treatment plants worldwide using either low- or medium-pressure UV technology. Recent studies investigating UV lamp technology, configuration, cleaning requirements and ageing, as well as long-term performance tests, have demonstrated beyond any doubt the effectiveness of UV in inactivating pathogens in wastewater. Research has also shown that, to ensure permanent inactivation and prevent the recovery of microorganisms following exposure to UV, a broad, “polychromatic” spectrum of UV wavelengths is necessary. These wavelengths inflict irreparable damage not only on cellular DNA, but on other molecules, such as enzymes, as well. Only medium-pressure UV lamps produce the necessary broad range of wavelengths; low-pressure lamps emit a single wavelength peak which only affects DNA. Polychromatic medium-pressure UV light is so effective because of the lampÕs exceptionally high UV energy output at specific wavelengths across the UV spectrum. It has been shown, for example, that pathogenic E. coli O175:H7 was able to repair the damage caused by low-pressure UV, but no repair was detected following exposure to UV from medium-pressure lamps.


2002 ◽  
Vol 68 (7) ◽  
pp. 3293-3299 ◽  
Author(s):  
J. L. Zimmer ◽  
R. M. Slawson

ABSTRACT The increased use of UV radiation as a drinking water treatment technology has instigated studies of the repair potential of microorganisms following treatment. This study challenged the repair potential of an optimally grown nonpathogenic laboratory strain of Escherichia coli after UV radiation from low- and medium-pressure lamps. Samples were irradiated with doses of 5, 8, and 10 mJ/cm2 from a low-pressure lamp and 3, 5, 8, and 10 mJ/cm2 from a medium-pressure UV lamp housed in a bench-scale collimated beam apparatus. Following irradiation, samples were incubated at 37°C under photoreactivating light or in the dark. Sample aliquots were analyzed for up to 4 h following incubation using a standard plate count. Results of this study showed that E. coli underwent photorepair following exposure to the low-pressure UV source, but no repair was detectable following exposure to the medium-pressure UV source at the initial doses examined. Minimal repair was eventually observed upon medium-pressure UV lamp exposure when doses were lowered to 3 mJ/cm2. This study clearly indicates differences in repair potential under laboratory conditions between irradiation from low-pressure and medium-pressure UV sources of the type used in water treatment.


Chemosphere ◽  
2017 ◽  
Vol 183 ◽  
pp. 582-588 ◽  
Author(s):  
Jingyun Fang ◽  
Quan Zhao ◽  
Chihhao Fan ◽  
Chii Shang ◽  
Yun Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document