A comparison of anionic and cationic dye removal efficiency of industrial bauxite waste red-mud

Author(s):  
Gülten Atun ◽  
Sinem Ortaboy ◽  
Elif Tüzün ◽  
Elif Türker Acar
2011 ◽  
Vol 340 ◽  
pp. 236-240
Author(s):  
Jian Feng Ma ◽  
Jian Ming Yu ◽  
Bing Ying Cui ◽  
Ding Long Li ◽  
Juan Dai

Inorganic-organic-bentonite was synthesized by modification of bentonite by Hydroxy-iron and surfactant, which could be applied in dye removal by adsorption and catalysis. The removal of acid dye Orange II was studied at various factors such as time and pH of solution. The results showed that the inorganic-organic-bentonite could efficiently remove the dye with efficiency of 96.22%. The maximum adsorption capacity is 76 mg/g. The pH of solution has significant effect on both adsorption and catalysis. When pH was 4, the maximum removal efficiency of adsorption and catalysis were 97.57% and 87.23%, respectively. After degradation, the secondary pollution was diminished and the bentonite could be reused.


Author(s):  
Jong-Chan Kim ◽  
Jungkyu Kim ◽  
Jinseok Park ◽  
Jung-Kwon Oh ◽  
In-Gyu Choi ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 384
Author(s):  
Ahmed Labena ◽  
Ahmed E. Abdelhamid ◽  
Abeer S. Amin ◽  
Shimaa Husien ◽  
Liqaa Hamid ◽  
...  

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.


2020 ◽  
Author(s):  
Zeinab Ghorbani

This study aimed to investigate the efficiency of the electro-persulfate process in removing acid blue 25 from aqueous solution. In order to optimize the parameters, the OFAT method was used, and the effect of three main parameters, including pH, sodium persulfate salt concentration, and current intensity was investigated. According to the results, the optimal removal efficiency of 94% in 60 minutes was obtained under conditions of pH=5, the initial concentration of sodium persulfate=250 mg / L, and the current=500 mA. According to the results of this study, the electro-persulfate process sulfate process can be an efficient process for dye removal from industrial effluents.


2015 ◽  
Vol 18 (1) ◽  
pp. 38-46 ◽  

<div> <p>This study was conducted to investigate the effect of praestol, as a coagulant-aid, to improve coagulation-flocculation process in the removal of disperse red 60 from aqueous solutions. The effect of various parameters including coagulants dose (10-1000 mg l<sup>-1</sup>), praestol dose (0-1000 mg l<sup>-1</sup>), solution pH (3-11), initial dye concentration (100-500 mg l<sup>-1</sup>), flocculation speed (30-60 rpm), flocculation time (15-30 min), settling time (5-60 min) and ionic strength (0-6 mg l<sup>-1</sup>) was evaluated on the dye removal. The dye removal efficiency was substantially increased by using praestol in the concentration of 80 mg l<sup>-1 </sup>and 400 mg l<sup>-1 </sup>for coagulation with alum and polyaluminum chloride (PACl), respectively. The maximum dye removal by alum coupled with praestol (Al-P) and PACl coupled with praestol (PA-P) was found to be 97.8% and 98.7%, respectively that were occurred at pH 7. The results showed that the application of PA-P or Al-P can be effectively used to remove disperse red 60 (DR 60) in aqueous solutions.</p> </div> <p>&nbsp;</p>


2015 ◽  
Vol 73 (5) ◽  
pp. 1283-1301 ◽  
Author(s):  
Irina Popescu ◽  
Dana Mihaela Suflet
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document