Bioreactor Cultivation of the NematodeCaenorhabditis elegans: Large Scale Production of Biologically Active Drug Receptors for Pharmaceutical Research

1997 ◽  
Vol 14 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Kodzo Gbewonyo ◽  
Susan P. Rohrer ◽  
Barry C. Buckland
2014 ◽  
Vol 61 (3) ◽  
Author(s):  
Patrycja Redkiewicz ◽  
Agnieszka Sirko ◽  
Katarzyna Anna Kamel ◽  
Anna Góra-Sochacka

Many examples of a successful application of plant-based expression systems for production of biologically active recombinant proteins exist in the literature. These systems can function as inexpensive platforms for the large scale production of recombinant pharmaceuticals or subunit vaccines. Hemagglutinin (HA) is a major surface antigen of the influenza virus, thus it is in the centre of interests of various subunit vaccine engineering programs. Large scale production of recombinant HA in traditional expression systems, such as mammalian or insect cells, besides other limitations, is expensive and time-consuming. These difficulties stimulate an ever-increasing interest in plant-based production of this recombinant protein. Over the last few years many successful cases of HA production in plants, using both transient and stable expression systems have been reported. Various forms of recombinant HA, including monomers, trimers, virus like particles (VLPs) or chimeric proteins containing its fusion with other polypeptides were obtained and shown to maintain a proper antigenicity. Immunizations of animals (mice, ferrets, rabbits or chickens) with some of these plant-derived hemagglutinin variants were performed, and their effectiveness in induction of immunological response and protection against lethal challenge with influenza virus demonstrated. Plant-produced recombinant subunit vaccines and plant-made VLPs were successfully tested in clinical trials (Phase I and II) that confirmed their tolerance and immunogenicity.


2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Nathalie Jung ◽  
Maike Windbergs

Abstract In the fast-developing fields of pharmaceutical research and industry, the implementation of Raman spectroscopy and related technologies has been very well received due to the combination of chemical selectivity and the option for non-invasive analysis of samples. This chapter explores established and potential applications of Raman spectroscopy, confocal Raman microscopy and related techniques from the early stages of drug development research up to the implementation of these techniques in process analytical technology (PAT) concepts for large-scale production in the pharmaceutical industry. Within this chapter, the implementation of Raman spectroscopy in the process of selection and optimisation of active pharmaceutical ingredients (APIs) and investigation of the interaction with excipients is described. Going beyond the scope of early drug development, the reader is introduced to the use of Raman techniques for the characterization of complex drug delivery systems, highlighting the technical requirements and describing the analysis of qualitative and quantitative composition as well as spatial component distribution within these pharmaceutical systems. Further, the reader is introduced to the application of Raman techniques for performance testing of drug delivery systems addressing drug release kinetics and interactions with biological systems ranging from single cells up to complex tissues. In the last part of this chapter, the advantages and recent developments of integrating Raman technologies into PAT processes for solid drug delivery systems and biologically derived pharmaceutics are discussed, demonstrating the impact of the technique on current quality control standards in industrial production and providing good prospects for future developments in the field of quality control at the terminal part of the supply chain and various other fields like individualized medicine. On the way from the active drug molecule (API) in the research laboratory to the marketed medicine in the pharmacy, therapeutic efficacy of the active molecule and safety of the final medicine for the patient are of utmost importance. For each step, strict regulatory requirements apply which demand for suitable analytical techniques to acquire robust data to understand and control design, manufacturing and industrial large-scale production of medicines. In this context, Raman spectroscopy has come to the fore due to the combination of chemical selectivity and the option for non-invasive analysis of samples. Following the technical advancements in Raman equipment and analysis software, Raman spectroscopy and microscopy proofed to be valuable methods with versatile applications in pharmaceutical research and industry, starting from the analysis of single drug molecules as well as complex multi-component formulations up to automatized quality control during industrial production.


2020 ◽  
Vol 24 (17) ◽  
pp. 1999-2018
Author(s):  
Vitor F. Ferreira ◽  
Thais de B. da Silva ◽  
Fernanda P. Pauli ◽  
Patricia G. Ferreira ◽  
Luana da S. M. Forezi ◽  
...  

Molecular rearrangements are important tools to increase the molecular diversity of new bioactive compounds, especially in the class of heterocycles. This review deals specifically with a very famous and widely applicable rearrangement known as the Dimroth Rearrangement. Although it has originally been observed for 1,2,3-triazoles, its amplitude was greatly expanded to other heterocycles, as well as from laboratory to large scale production of drugs and intermediates. The reactions that were discussed in this review were selected with the aim of demonstrating the windows that may be open by the Dimroth's rearrangement, especially in what regards the development of new synthetic approaches toward biologically active compounds.


2009 ◽  
Vol 82 (3) ◽  
pp. 439-444 ◽  
Author(s):  
Xiaoping Wu ◽  
Haishan Tian ◽  
Yadong Huang ◽  
Sixian Wu ◽  
Xiaoju Liu ◽  
...  

2008 ◽  
Vol 63 (3-4) ◽  
pp. 284-288 ◽  
Author(s):  
Tae Won Goo ◽  
Eun Young Yun ◽  
Sung Wan Kim ◽  
Kwang Ho Choi ◽  
Seok Woo Kang ◽  
...  

The insect baculovirus expression vector system (BEVS) is useful for the production of biologically active recombinant proteins. However, the overexpression of foreign proteins in this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we have developed a versatile baculovirus expression and secretion system using the Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion improved the secretion and antibacterial activity of recombinant enbocin proteins. Thus, bPDI gene fusion is a useful addition to the BEVS for the large-scale production of bioactive recombinant proteins


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


Sign in / Sign up

Export Citation Format

Share Document