Effect of Thyroxine on Transforming Growth Factor β1, Collagen I, and V Expression in Keratoconus Corneal Fibroblasts and Keratocytes, in Vitro

2021 ◽  
pp. 1-8
Author(s):  
Tanja Stachon ◽  
Marwa Omar Ali ◽  
Lorenz Latta ◽  
Gamal Huessein Huessein ◽  
Tarek A. Mohamed ◽  
...  
Endocrine ◽  
2000 ◽  
Vol 13 (3) ◽  
pp. 305-313 ◽  
Author(s):  
E. Nasatzky ◽  
E. Azran ◽  
D. D. Dean ◽  
Barbara D. Boyan ◽  
Z. Schwartz

2001 ◽  
Vol 21 (21) ◽  
pp. 7218-7230 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor β1 (TGF-β1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-β1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-β1-induced angiogenesis mainly by compromising cell survival. We established that TGF-β1 stimulated the expression of TGF-α mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-β1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-β1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-α alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-β1. We therefore propose that TGF-β1 promotes angiogenesis at least in part via the autocrine secretion of TGF-α, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.


EP Europace ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1590-1599
Author(s):  
Maximilian Funken ◽  
Tobias Bruegmann ◽  
Philipp Sasse

Abstract Aims Besides providing mechanical stability, fibroblasts in the heart could modulate the electrical properties of cardiomyocytes. Here, we aim to develop a three-dimensional hetero-cellular model to analyse the electric interaction between fibroblasts and human cardiomyocytes in vitro using selective optogenetic de- or hyperpolarization of fibroblasts. Methods and results NIH3T3 cell lines expressing the light-sensitive ion channel Channelrhodopsin2 or the light-induced proton pump Archaerhodopsin were generated for optogenetic depolarization or hyperpolarization, respectively, and characterized by patch clamp. Cardiac bodies consisting of 50% fibroblasts and 50% human pluripotent stem cell-derived cardiomyocytes were analysed by video microscopy and membrane potential was measured with sharp electrodes. Myofibroblast activation in cardiac bodies was enhanced by transforming growth factor-β1 (TGF-β1)-stimulation. Connexin-43 expression was analysed by qPCR and fluorescence recovery after photobleaching. Illumination of Channelrhodopsin2 or Archaerhodopsin expressing fibroblasts induced inward currents and depolarization or outward currents and hyperpolarization. Transforming growth factor-β1-stimulation elevated connexin-43 expression and increased cell–cell coupling between fibroblasts as well as increased basal beating frequency and cardiomyocyte resting membrane potential in cardiac bodies. Illumination of cardiac bodies generated with Channelrhodopsin2 fibroblasts accelerated spontaneous beating, especially after TGF-β1-stimulation. Illumination of cardiac bodies prepared with Archaerhodopsin expressing fibroblasts led to hyperpolarization of cardiomyocytes and complete block of spontaneous beating after TGF-β1-stimulation. Effects of light were significantly smaller without TGF-β1-stimulation. Conclusion Transforming growth factor-β1-stimulation leads to increased hetero-cellular coupling and optogenetic hyperpolarization of fibroblasts reduces TGF-β1 induced effects on cardiomyocyte spontaneous activity. Optogenetic membrane potential manipulation selectively in fibroblasts in a new hetero-cellular cardiac body model allows direct quantification of fibroblast–cardiomyocyte coupling in vitro.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 687 ◽  
Author(s):  
Sam G. Edalat ◽  
Yongjun Jang ◽  
Jongseong Kim ◽  
Yongdoo Park

In vitro maturation of cardiomyocytes in 3D is essential for the development of viable cardiac models for therapeutic and developmental studies. The method by which cardiomyocytes undergoes maturation has significant implications for understanding cardiomyocytes biology. The regulation of the extracellular matrix (ECM) by changing the composition and stiffness is quintessential for engineering a suitable environment for cardiomyocytes maturation. In this paper, we demonstrate that collagen type I, a component of the ECM, plays a crucial role in the maturation of cardiomyocytes. To this end, embryonic stem-cell derived cardiomyocytes were incorporated into Matrigel-based hydrogels with varying collagen type I concentrations of 0 mg, 3 mg, and 6 mg. Each hydrogel was analyzed by measuring the degree of stiffness, the expression levels of MLC2v, TBX18, and pre-miR-21, and the size of the hydrogels. It was shown that among the hydrogel variants, the Matrigel-based hydrogel with 3 mg of collagen type I facilitates cardiomyocyte maturation by increasing MLC2v expression. The treatment of transforming growth factor β1 (TGF-β1) or fibroblast growth factor 4 (FGF-4) on the hydrogels further enhanced the MLC2v expression and thereby cardiomyocyte maturation.


Marine Drugs ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 65 ◽  
Author(s):  
Agata Zykwinska ◽  
Mélanie Marquis ◽  
Mathilde Godin ◽  
Laëtitia Marchand ◽  
Corinne Sinquin ◽  
...  

Articular cartilage is an avascular, non-innervated connective tissue with limited ability to regenerate. Articular degenerative processes arising from trauma, inflammation or due to aging are thus irreversible and may induce the loss of the joint function. To repair cartilaginous defects, tissue engineering approaches are under intense development. Association of cells and signalling proteins, such as growth factors, with biocompatible hydrogel matrix may lead to the regeneration of the healthy tissue. One current strategy to enhance both growth factor bioactivity and bioavailability is based on the delivery of these signalling proteins in microcarriers. In this context, the aim of the present study was to develop microcarriers by encapsulating Transforming Growth Factor-β1 (TGF-β1) into microparticles based on marine exopolysaccharide (EPS), namely GY785 EPS, for further applications in cartilage engineering. Using a capillary microfluidic approach, two microcarriers were prepared. The growth factor was either encapsulated directly within the microparticles based on slightly sulphated derivative or complexed firstly with the highly sulphated derivative before being incorporated within the microparticles. TGF-β1 release, studied under in vitro model conditions, revealed that the majority of the growth factor was retained inside the microparticles. Bioactivity of released TGF-β1 was particularly enhanced in the presence of highly sulphated derivative. It comes out from this study that GY785 EPS based microcarriers may constitute TGF-β1 reservoirs spatially retaining the growth factor for a variety of tissue engineering applications and in particular cartilage regeneration, where the growth factor needs to remain in the target location long enough to induce robust regenerative responses.


2017 ◽  
Vol 70 (3) ◽  
pp. 280 ◽  
Author(s):  
Vipul Agarwal ◽  
Fiona M. Wood ◽  
Mark Fear ◽  
K. Swaminathan Iyer

Skin scarring is a highly prevalent and inevitable outcome of adult mammalian wound healing. Scar tissue is both pathologically and aesthetically inferior to the normal skin owing to elevated concentration of highly orientated collagen I architecture in the innate repaired tissue. With highly invasive surgery being the main treatment modality, there is a great need for alternative strategies to mitigate the problem of scar formation. Tissue engineering approaches using polymeric scaffolds have shown tremendous promise in various disease models including skin wound healing; however, the problem of skin scarring has been greatly overlooked. Herein, we developed an electrospun poly(glycidyl methacrylate) (ES-PGMA) scaffold incorporating a small-molecule antiscarring agent, PXS64. PXS64, a lipophilic neutral analogue of mannose-6-phosphate, has been shown to inhibit the activation of transforming growth factor β1 (TGFβ1). TGFβ1 is a primary protein cytokine regulating the expression of collagen I during wound healing and therefore governs the formation of scar tissue. The nanofibres were tested for biocompatibility as a tissue engineering scaffold and for their efficacy to inhibit TGFβ1 activation in human dermal skin fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document