Abstract. Prediction of tourist visits of Mount Merbabu National Park (TNGMb) needs to be done to control the number of visitors and to preserve the national park. The combination of time series forecasting (TSF) and deep learning methods has become a new alternative for prediction. This case study was conducted to implement several methods combination of TSF and Long-Short Term Memory (LSTM) to predict the visits. In this case study, there are 18 modelling scenarios as research objects to determine the best model by utilizing tourist visits data from 2013 to 2018. The results show that the model applying the lag time method can improve the model's ability to capture patterns on time series data. The error value is measured using the root mean square error (RMSE), with the smallest value of 3.7 in the LSTM architecture, using seven lags as a feature and one lag as a label.Keywords: Tourist Visit, Taman Nasional Gunung Merbabu, Prediction, Recurrent Neural Network, Long-Short Term MemoryAbstrak. Prediksi kunjungan wisatawan Taman Nasional Gunung Merbabu (TNGMb) perlu dilakukan untul pengendalian jumlah pengunjung dan menjaga kelestarian taman nasional. Gabungan metode antara time series forecasting (TSF) dan deep learning telah menjadi alternatif baru untuk melakukan prediksi. Studi kasus ini dilakukan untuk mengimplementasi gabungan dari beberapa macam metode antara TSF dan Long-Short Term Memory (LSTM) untuk memprediksi kunjungan pada TNGMb. Pada studi kasus ini, terdapat 18 skenario pemodelan sebagai objek penelitian untuk menentukan model terbaik, dengan memanfaatkan data jumlah kunjungan wisatawan di TNGMb mulai dari tahun 2013 sampai dengan tahun 2018. Hasil prediksi menunjukkan pemodelan dengan menerapkan metode lag time dapat meningkatakan kemampuan model untuk menangkap pola pada data deret waktu. Besar nilai kesalahan diukur menggunakan root mean square error (RMSE), dengan nilai terkecil sebesar 3,7 pada arsitektur LSTM, menggunakan tujuh lag sebagai feature dan satu lag sebagai label. Kata Kunci: Kunjungan Wisatawan, Taman Nasional Gunung Merbabu, Prediksi, Recurrent Neural Network, Long-Short Term Memory