scholarly journals Effect of the nitrate group on yields and composition of secondary organic aerosol formed from reactions of alkyl nitrates with OH radicals in the presence of NOx

2020 ◽  
Vol 54 (9) ◽  
pp. 1070-1082
Author(s):  
Lucas B. Algrim ◽  
Paul J. Ziemann
2019 ◽  
Author(s):  
Christopher Y. Lim ◽  
David H. Hagan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
...  

Abstract. Biomass burning is an important source of aerosol and trace gases to the atmosphere, but how these emissions change chemically during their lifetimes is not fully understood. As part of the Fire Influence on Regional and Global Environments Experiment (FIREX 2016), we investigated the effect of photochemical aging on biomass burning organic aerosol (BBOA), with a focus on fuels from the western United States. Emissions were sampled into a small (150 L) environmental chamber and photochemically aged via the addition of ozone and irradiation by 254 nm light. While some fraction of species undergoes photolysis, the vast majority of aging occurs via reaction with OH radicals, with total OH exposures corresponding to the equivalent of up to 10 days of atmospheric oxidation. For all fuels burned, large and rapid changes are seen in the ensemble chemical composition of BBOA, as measured by an aerosol mass spectrometer (AMS). Secondary organic aerosol (SOA) formation is seen for all aging experiments and continues to grow with increasing OH exposure, but the magnitude of the SOA formation is highly variable between experiments. This variability can be explained well by a combination of experiment-to-experiment differences in OH exposure and the total concentration of non-methane organic gases (NMOGs) in the chamber before oxidation, measured by PTR-ToF-MS (r2 values from 0.64 to 0.83). From this relationship, we calculate the fraction of carbon from biomass burning NMOGs that is converted to SOA as a function of equivalent atmospheric aging time, with carbon yields ranging from 24 ± 4 % after 6 hours to 56 ± 9 % after 4 days.


2021 ◽  
Vol 7 (13) ◽  
pp. eabe2952
Author(s):  
Houssni Lamkaddam ◽  
Josef Dommen ◽  
Ananth Ranjithkumar ◽  
Hamish Gordon ◽  
Günther Wehrle ◽  
...  

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).


2009 ◽  
Vol 9 (2) ◽  
pp. 8857-8902 ◽  
Author(s):  
A. W. Rollins ◽  
A. Kiendler-Scharr ◽  
J. Fry ◽  
T. Brauers ◽  
S. S. Brown ◽  
...  

Abstract. Alkyl nitrates and secondary organic aerosol (SOA) produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR chamber. We find the yield of nitrates is 70±8% from the isoprene+NO3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO3 is 40±20%. We find an effective rate constant for reaction of NO3 with the group of first generation oxidation products to be 7×10−14 cm3 s−1. At the low total organic aerosol concentration in the chamber (max ≈0.6 μg m−3) we observed a mass yield (ΔSOA mass/Δisoprene mass) of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.2% while the further oxidation of the initial products leads to a yield of 10% (defined as ΔSOA/Δisoprene2x where Δisoprene2x is the mass of isoprene which reacted twice with NO3). The SOA yield of 10% is consistent with equilibrium partitioning of highly functionalized C5 products of isoprene oxidation.


2015 ◽  
Vol 15 (21) ◽  
pp. 30409-30471 ◽  
Author(s):  
B. B. Palm ◽  
P. Campuzano-Jost ◽  
A. M. Ortega ◽  
D. A. Day ◽  
L. Kaser ◽  
...  

Abstract. Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected) compared to daytime (average 1 μg m-3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 24–80 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.


2015 ◽  
Vol 15 (6) ◽  
pp. 2953-2968 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
F. Siekmann ◽  
C. Giorio ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. First- and higher order-generation products formed from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber. Significant oxidation rates have been maintained for up to 7 h, allowing the study of highly oxidized products. Gas-phase product distribution and yields were obtained, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation has also been investigated. SOA mass yields from previous studies show large discrepancies. The mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission similar to the solar spectrum. Differences in light source are therefore proposed to explain partially the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. There is a high degree of similarity between the SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e., presence of NOx and long term oxidation). According to our results, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies.


2019 ◽  
Author(s):  
Giulia Stefenelli ◽  
Jianhui Jiang ◽  
Amelie Bertrand ◽  
Emily A. Bruns ◽  
Simone M. Pieber ◽  
...  

Abstract. Box model simulations based on the volatility basis set (VBS) approach were used to assess secondary organic aerosol (SOA) precursors and volatility distributions from residential wood combustion. Emissions were sampled from three different residential stoves at different combustion conditions (flaming vs. smoldering-dominated), aging temperatures (−10 °C, 2 °C and 15 °C), and emission loads, then exposed to hydroxyl (OH) radicals in a smog chamber. Primary emissions of SOA precursor compounds, organic aerosol and their evolution during aging in the smog chamber were monitored by a comprehensive suite of gas and particle instrumentation, including a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). SOA precursors were classified according to their chemical composition and the identification of the nature of the precursors revealed useful to better constrain model parameters, in particular SOA production rates and molecular characteristics of the condensable gases formed. The general aim of the model was the determination of the parameters describing the volatility distributions of the oxidation products from the different chemical classes considered and their temperature dependence. Novel parameterization methods based on a genetic algorithm (GA) approach allowed estimation of precursor class contributions to SOA and evaluation of the effect of emission variability on SOA yield predictions. Significant differences were observed in the gas-phase composition between smoldering and flaming emissions. Smoldering phase emissions were dominated by oxidized VOCs with less than six carbon atoms family (OVOCc 


2010 ◽  
Vol 10 (21) ◽  
pp. 10521-10539 ◽  
Author(s):  
Y. B. Lim ◽  
Y. Tan ◽  
M. J. Perri ◽  
S. P. Seitzinger ◽  
B. J. Turpin

Abstract. There is a growing understanding that secondary organic aerosol (SOA) can form through reactions in atmospheric waters (i.e., clouds, fogs, and aerosol water). In clouds and wet aerosols, water-soluble organic products of gas-phase photochemistry dissolve into the aqueous phase where they can react further (e.g., with OH radicals) to form low volatility products that are largely retained in the particle phase. Organic acids, oligomers and other products form via radical and non-radical reactions, including hemiacetal formation during droplet evaporation, acid/base catalysis, and reaction of organics with other constituents (e.g., NH4+). This paper provides an overview of SOA formation through aqueous chemistry, including atmospheric evidence for this process and a review of radical and non-radical chemistry, using glyoxal as a model precursor. Previously unreported analyses and new kinetic modeling are reported herein to support the discussion of radical chemistry. Results suggest that reactions with OH radicals tend to be faster and form more SOA than non-radical reactions. In clouds these reactions yield organic acids, whereas in wet aerosols they yield large multifunctional humic-like substances formed via radical-radical reactions and their O/C ratios are near 1.


2017 ◽  
Vol 17 (12) ◽  
pp. 7757-7773 ◽  
Author(s):  
Sebnem Aksoyoglu ◽  
Giancarlo Ciarelli ◽  
Imad El-Haddad ◽  
Urs Baltensperger ◽  
André S. H. Prévôt

Abstract. Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February–March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and transformation industries (SNAP1) was the most important contributor to sulfate particulate mass. Emissions from international shipping were also found to be very important for both nitrate and sulfate formation in Europe. In addition, we also examined contributions from the geographical source regions to SIA concentrations in the most densely populated region of Switzerland, the Swiss Plateau.


2015 ◽  
Vol 15 (4) ◽  
pp. 4117-4143 ◽  
Author(s):  
K. M. Badali ◽  
S. Zhou ◽  
D. Aljawhary ◽  
M. Antiñolo ◽  
W. J. Chen ◽  
...  

Abstract. This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA aerosol is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are five times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over three times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloudwater and aerosol chemistry.


2014 ◽  
Vol 14 (16) ◽  
pp. 22507-22545 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
F. Siekmann ◽  
C. Giorio ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. First- and higher-generation products from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber: (1) significant oxidation rates have been maintained for up to 7 h allowing the study of highly oxidized products, (2) gas-phase products distribution and yields are provided, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation resulting from these experiments has also been investigated. Among the general dispersion exhibited by SOA mass yields from previous studies, the mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission spectrum similar to the solar one. An effect of light source is hence proposed to explain, at least in part, the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. A high degree of similarity is shown in the comparison of SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e. presence of NOx and long term oxidation). Overall, if these results are further confirmed, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies.


Sign in / Sign up

Export Citation Format

Share Document