The Influence of Particle Size Distribution and Surface Roughness of Carrier Particles on the in vitro Properties of Dry Powder Inhalations

1999 ◽  
Vol 31 (4) ◽  
pp. 301-321 ◽  
Author(s):  
Fridrun Podczeck
2020 ◽  
Vol 11 (1) ◽  
pp. 567-580
Author(s):  
Venugopalaiah Penabaka ◽  
Kumar B ◽  
Prasad N.B.L

Many factors affect the pulmonary drug delivery and stability of the nanoparticles an acupuncture consisting of bronchial asthma. Present research envisages on the development of dry powder nanoparticles as insufflation a acupuncture consisting of bronchial asthma (allergy due to Aspergillus fumigatus) using physical mixing and spray drying. Different founding are prepared and characterized with suitable excipients like lactose and trehalose. The particle size distribution of nano milled and spray-dried particles of Terbutaline Sulphate and Itraconazole showed unimodal size distribution. The formulations prepared with trehalose as the carrier showed less Dv90, Dv50 and Dv10 values due to the fineness in the particles of trehalose when compared to lactose. The Dv50  and Dv10 values were in the range of mountains of 0.43-0.89 µm and 0.21–0.49 µm for all formulations, which shows the primary particle size in the nanometer scale. Smooth and nearly spherical particles were produced for spray-dried formulations when compared to milled formulations. Zeta potential comes across until be between +17±0.13 to +32±0.12, which explains the particles as moderately stable. MMAD values ranges from 3.19 µm to 4.78 µm for milled nanoparticles and 3.45 µm to 4.21 µm for spray-dried particles. Formulated nanoparticles exhibited good spreading properties, which will allow all the particles to deposition palmy profusion territories consisting of the lung. In-vitro drug release studies explains that spray-dried formulations of Terbutaline sulpahte and Itraconazole using lactose as excipients released the drug upto 98.9% and 99.1% in 180mts.


2020 ◽  
Vol 11 (11) ◽  
pp. 9547-9559
Author(s):  
Annika Feichtinger ◽  
Elke Scholten ◽  
Guido Sala

Particle size distribution and particle size ratio have an important effect on rheological properties of model chocolate samples, but also other factors like particle shape, surface roughness and hydrophilicity should be taken into account.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2105 ◽  
Author(s):  
Aleixandre ◽  
Benavent-Gil ◽  
Rosell

The growing interest in controlling the glycemic index of starchy-rich food has encouraged research about the role of the physical structure of food. The aim of this research was to understand the impact of the structure and the in vitro oral processing methods on bolus behavior and starch hydrolysis of wheat bread. Two different bread structures (loaf bread and bread roll) were obtained using different shaping methods. Starch hydrolysis during in vitro oro-gastro-intestinal digestion using the INFOGEST protocol was analyzed and oral processing was simulated by applying two different disintegration processes (basic homogenizer, crystal balls). The bread structure, and thus the shaping method during breadmaking, significantly affected the bolus particle size during all digestion stages. The different in vitro oral processing methods affected the bolus particle sizes after the oral phase in both breads, but they affected the particle size distribution after the gastric and intestinal phase only in the case of loaf bread. Aggregates were observed in the gastric phase, which were significantly reduced in the intestinal phase. When simulated oral processing with crystal balls led to bigger particle size distribution, bread rolls presented the highest in vitro starch hydrolysis. The type of in vitro oral processing allowed discrimination of the performance of the structures of the two breads during starch hydrolysis. Overall, crumb structure significantly affected texture properties, but also had a significant impact on particle size during digestion and starch digestibility.


Author(s):  
Amol A. Tatode ◽  
Arun T. Patil ◽  
Milind J. Umekar ◽  
Darshan R. Telange

Objective: Aim of the present investigation was to determine the effect of various synthetic grades of phospholipids on paclitaxel liposomes (PTL).Methods: The PTL formulations using various grades of phospholipids were prepared by film hydration method. The prepared PTL formulations were physicochemically characterized by entrapment efficiency (EE, %w/w), vesicular size and particle size distribution. These formulations were also characterized for function parameters such as in vitro release and hemolytic toxicity assay.Results: The synthetic grades of phospholipids significantly influenced PTL formulations. The stoichiometric ratio (1:1) between CH and various synthetic phospholipids was found to be optimized one, from rest of the ratios. The characterization confirmed the formation of PTL. The EE was observed to be high (86.67%) as increasing the ratios between CH and phospholipids but then declined suddenly as further increasing the ratio. The best liposomal formulations showed that the spherical shape was found to be within size ranging from<10 µm, with a higher rate and extent of the release, ~86.22% of paclitaxel from PTL formulation. The results of the hemolytic toxicity study demonstrated that PTL formulations with a ratio (1:1) exhibited a significantly lower hemolytic toxicity (2.70%), compared to all formulations.Conclusion: The result revealed the excellent effect of phospholipids on paclitaxel liposomes. The paclitaxel liposomes prepared with CH: PL90G ratio (1:1) was found to be optimized one. The entrapment efficiency, particle size distribution, in vitro release and hemolytic activity with this ratio shown to be excellent as compared to other ratios.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1571 ◽  
Author(s):  
Fanchao Meng ◽  
Yating Sun ◽  
Robert J. Lee ◽  
Guiyuan Wang ◽  
Xiaolong Zheng ◽  
...  

Microfluidic technology (MF) has improved the formulation of nanoparticles (NPs) by achieving uniform particle size distribution, controllable particle size, and consistency. Moreover, because liquid mixing can be precisely controlled in the pores of the microfluidic chip, maintaining high mixing efficiency, MF exerts higher of NP encapsulation efficiency (EE) than conventional methods. MF-NPs-cabazitaxel (CTX) particles (MF-NPs-CTX) were first prepared by encapsulating CTX according to MF. Folate (FA)- Polyethylene glycol (PEG)-NPs-CTX particles (FA-PEG-NPs-CTX) were formulated by connecting FA to MF-NPs-CTX to endow NPs with targeted delivery capability. Accordingly, the mean particle size of FA-PEG-NPs-CTX increased by approximately 25 nm, as compared with MF-NPs-CTX. Upon morphological observation of FA-PEG-NPs-CTX and MF-NPs-CTX by transmission electron microscopy (TEM), all NPs were spherical and particle size distribution was uniform. Moreover, the increased delivery efficiency of CTX in vitro and its strong tumor inhibition in vivo indicated that FA-PEG-NPs-CTX had a powerful tumor-suppressive effect both in vitro and in vivo. In vivo imaging and pharmacokinetic data confirmed that FA-PEG-NPs-CTX had good drug delivery efficiency. Taken together, FA-PEG-NPs-CTX particles prepared using MF showed high efficient and targeted drug delivery and may have a considerable driving effect on the clinical application of targeting albumin NPs.


2009 ◽  
Vol 103 (8) ◽  
pp. 1167-1173 ◽  
Author(s):  
Tjalling W. de Vries ◽  
Bart L. Rottier ◽  
Doetie Gjaltema ◽  
Paul Hagedoorn ◽  
Henderik W. Frijlink ◽  
...  

Author(s):  
D. Cardenas Garcia ◽  
H. Galbraith ◽  
C.J. Newbold ◽  
J.A. Rooke

Rice polishings (RP) which are produced as a by-product during the pearling of hulled rice have been successfully used as a supplementary food for ruminants. However, information on the effects of feeding RP on rumen fermentation is contradictory. Valdez et al. (1977) found RP had little effect on rumen fermentation in bulls and suggested that the stimulation in growth rate observed, with RP may be mediated by the provision of nutrients postruminally. In contrast, Cardenas et al. (1992) reported that RP stimulated volatile fatty acid concentrations and microbial numbers when added to a rumen simulating fermentor (Rusitec). One reason for these differences might be that changes in the milling process, used to produce RP, have resulted in a by-product with different physical characteristics to that used in earlier studies. The experiment described here was designed to investigate the particle size distribution in Colombian rice polishings and the effect of these fractions on the rumen fermentation in vitro.


Sign in / Sign up

Export Citation Format

Share Document