scholarly journals Adenosine receptor A2a blockade by caffeine increases IFN–gamma production in Th1 cells from patients with rheumatoid arthritis

Author(s):  
L Gloyer ◽  
V Golumba-Nagy ◽  
A Meyer ◽  
S Yan ◽  
J Schiller ◽  
...  
1989 ◽  
Vol 170 (3) ◽  
pp. 865-875 ◽  
Author(s):  
J M Alvaro-Gracia ◽  
N J Zvaifler ◽  
G S Firestein

Granulocyte/macrophage CSF (GM-CSF) has recently been identified in rheumatoid arthritis (RA) synovial effusions. To study a potential role for GM-CSF and other cytokines on the induction of HLA-DR expression on monocytes and synovial macrophages, we analyzed the relative ability of recombinant human cytokines to induce the surface expression of class II MHC antigens on normal peripheral blood monocytes by FACS analysis. GM-CSF (800 U/ml) (mean fluorescence channel 2.54 +/- 0.33 times the control, p less than 0.001) and IFN-gamma (100 U/ml) (5.14 +/- 0.60, p less than 0.001) were the most potent inducers of HLA-DR. TNF-alpha and IL-4 also increased HLA-DR expression, although to a lesser degree [1.31 +/- 0.06 (p less than 0.02) and 1.20 +/- 0.03 (p less than 0.01), respectively]. IL-1 (40 U/ml), IL-2 (10 ng/ml), IL-3 (50 U/ml), IL-6 (100 U/ml), and CSF-1 (1,000 U/ml) did not affect surface HLA-DR density. GM-CSF also increased HLA-DR mRNA expression and surface HLA-DQ expression, but decreased CD14 (a monocyte/macrophage antigen) expression. The effect of GM-CSF on HLA-DR was not mediated by the generation of IFN-gamma in vitro because it was not blocked by anti-IFN-gamma mAb. GM-CSF was additive with IL-4 and low amounts (less than 3 U/ml) of IFN-gamma and synergistic with TNF-alpha. Because we have recently reported that supernatants of cultured RA synovial cells produce a non-IFN-gamma factor that induces HLA-DR on monocytes, we then attempted to neutralize this factor with specific anti-GM-CSF mAb. Four separate synovial tissue supernatants were studied, and the antibody neutralized the HLA-DR-inducing factor in each (p less than 0.01).


Author(s):  
Yongji Li ◽  
Wendi Yang ◽  
Feng Wang

Abstract Background Cell division control protein 42 (CDC42) is reported to be involved in multiple inflammation processes by regulating T cell differentiation, maintaining immune cell homeostasis, and altering their function, while no relevant studies explored its clinical role in patients with rheumatoid arthritis (RA). Therefore, this study aimed to explore the correlation of CDC42 with Th1 and Th17 cells and its association with disease risk, activity, and treatment outcomes of RA. Methods After the enrollment of 95 active RA patients and 50 healthy subjects (HC), their CDC42, Th1 cells, and Th17 cells were assayed by RT-qPCR and flow cytometry, accordingly. For RA patients only, CDC42 was also detected at W6, and W12 after treatment. The treatment response and remission status were evaluated at W12. Results Compared to HC, CDC42 was reduced (P < 0.001), while Th1 cells (P = 0.021) and Th17 cells (P < 0.001) were increased in RA patients. Besides, CDC42 was negatively correlated with Th17 cells (P < 0.001), erythrocyte sedimentation rate (ESR) (P = 0.012), C-reactive protein (P = 0.002), and disease activity score in 28 joints (DAS28) (P = 0.007), but did not relate to Th1 cells or other disease features (all P > 0.05) in RA patients. Furthermore, CDC42 was elevated during treatment in RA patients (P < 0.001). Moreover, CDC42 increment at W12 correlated with treatment response (P = 0.004). Besides, CDC42 elevation at W0 (P = 0.038), W6 (P = 0.001), and W12 (P < 0.001) also linked with treatment remission. Conclusion CDC42 has the potential to serve as a biomarker to monitor disease activity and treatment efficacy in patients with RA.


2020 ◽  
Vol 8 (1) ◽  
pp. e000610 ◽  
Author(s):  
Rui Yang ◽  
Samah Elsaadi ◽  
Kristine Misund ◽  
Pegah Abdollahi ◽  
Esten Nymoen Vandsemb ◽  
...  

BackgroundPD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM.MethodsExpression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo.ResultsElevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM.ConclusionsOur data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


1994 ◽  
Vol 179 (2) ◽  
pp. 589-600 ◽  
Author(s):  
F Powrie ◽  
R Correa-Oliveira ◽  
S Mauze ◽  
R L Coffman

BALB/c mice infected with the intracellular protozoan Leishmania major mount a T helper cell 2 (Th2) response that fails to control growth of the parasite and results in the development of visceral leishmaniasis. Separation of CD4+ T cells into CD45RBhigh and CD45RBlow subsets showed that the L. major-specific Th2 cells were contained within the CD45RBlow population as these cells produced high levels of antigen-specific interleukin 4 (IL-4) in vitro and transferred a nonhealing response to L. major-infected C.B-17 scid mice. In contrast, the CD45RBhighCD4+ population contained L. major-reactive cells that produced interferon gamma (IFN-gamma) in vitro and transferred a healing Th1 response to L. major-infected C.B-17 scid mice. Transfer of the Th1 response by the CD45RBhigh population was inhibited by the CD45RBlow population by a mechanism that was dependent on IL-4. These data indicate that L. major-specific Th1 cells do develop in BALB/c mice, but their functional expression is actively inhibited by production of IL-4 by Th2 cells. In this response, the suppressed Th1 cells can be phenotypically distinguished from the suppressive Th2 cells by the level of expression of CD45RB. Although the CD45RBhigh population mediated a protective response to L. major, C.B-17 scid mice restored with this population developed a severe inflammatory response in the colon that was independent of L. major infection, and was prevented by cotransfer of the CD45RBlow population. The colitis appeared to be due to a dysregulated Th1 response as anti-IFN-gamma, but not anti-IL-4, prevented it. Taken together, the data show that the CD4+ T cell population identified by high level expression of the CD45RB antigen contains cells that mediate both protective and pathogenic Th1 responses and that the reciprocal CD45RBlow population can suppress both of these responses. Whether suppression of cell-mediated immunity is beneficial or not depends on the nature of the stimulus, being deleterious during L. major infection but crucial for control of potentially pathogenic inflammatory responses developing in the gut.


1988 ◽  
Vol 167 (4) ◽  
pp. 1350-1363 ◽  
Author(s):  
W H Boom ◽  
D Liano ◽  
A K Abbas

To compare the helper function of murine T cell clones that secrete IL-2 and IFN-gamma (Th1 cells) or IL-4 and IL-5 (Th2), purified resting B cells were stimulated with F(ab')2 rabbit anti-mouse Ig (RAMG) and rabbit Ig-specific, class II MHC-restricted cloned T cells belonging to the two subsets. Both Th2 clones examined induced strong proliferative responses of B cells in the presence of RAMG, as well as the secretion of IgM and IgG1 antibodies. In contrast, the Th1 clones tested failed to stimulate B cell growth or antibody secretion. Th2-mediated B cell activation was dependent on IL-4 and IL-5, and was also inhibited by IFN-gamma or IFN-gamma produced by Th1 cells present in the same cultures. However, the failure of Th1 cells to help resting B cells could not be reversed with neutralizing anti-IFN-gamma antibody. In addition to this inhibitory effect, IFN-gamma was required for the secretion of IgG2a antibody, particularly when B cells were stimulated with polyclonal activators such as LPS. Finally, both sets of T cell clones secreted lymphokines when stimulated with purified B cells and RAMG. These experiments demonstrate that T cells that differ in lymphokine production also differ in their ability to help B cells as a result of cognate interactions at low concentrations of antigens. Moreover, IL-4, IL-5, and IFN-gamma serve different roles in the T cell-dependent proliferative and differentiative responses of resting B lymphocytes.


ChemInform ◽  
2005 ◽  
Vol 36 (28) ◽  
Author(s):  
Julius J. Matasi ◽  
John P. Caldwell ◽  
Jinsong Hao ◽  
Bernard Neustadt ◽  
Leyla Arik ◽  
...  

1993 ◽  
Vol 177 (6) ◽  
pp. 1797-1802 ◽  
Author(s):  
J P Sypek ◽  
C L Chung ◽  
S E Mayor ◽  
J M Subramanyam ◽  
S J Goldman ◽  
...  

Resistance to Leishmania major in mice is associated with the appearance of distinct T helper type 1 (Th1) and Th2 subsets. T cells from lymph nodes draining cutaneous lesions of resistant mice are primarily interferon gamma (IFN-gamma)-producing Th1 cells. In contrast, T cells from susceptible mice are principally Th2 cells that generate interleukin 4 (IL-4). Although existing evidence is supportive of a role for IFN-gamma in the generation of Th1 cells, additional factors may be required for a protective response to be maintained. A potential candidate is IL-12, a heterodimeric cytokine produced by monocytes and B cells that has multiple effects on T and natural killer cell function, including inducing IFN-gamma production. Using an experimental leishmanial model we have observed that daily intraperitoneal administration at the time of parasite challenge of either 0.33 micrograms IL-12 (a consecutive 5 d/wk for 5 wk) or 1.0 micrograms IL-12 per mouse (only a consecutive 5 d) caused a &gt; 75% reduction in parasite burden at the site of infection, in highly susceptible BALB/c mice. Delay of treatment by 1 wk had less of a protective effect. Concomitant with these protective effects was an increase in IFN-gamma and a decrease in IL-4 production, as measured by enzyme-linked immunosorbent assay of supernatants generated from popliteal lymph node cells stimulated with leishmanial antigen in vitro. The reduction in parasite numbers induced by IL-12 therapy was still apparent at 10 wk postinfection. In addition, we observed that the administration of a rabbit anti-recombinant murine IL-12 polyclonal antibody (200 micrograms i.p. every other day for 25 d) at the time of infection to resistant C57Bl/6 mice exacerbated disease. These effects were accompanied by a shift in IFN-gamma production in vitro by antigen-stimulated lymph node cells indicative of a Th2-like response. These findings suggest that IL-12 has an important role in initiating a Th1 response and protective immunity.


2006 ◽  
Vol 177 (10) ◽  
pp. 7173-7183 ◽  
Author(s):  
Silvana Morello ◽  
Kazuhiro Ito ◽  
Satoshi Yamamura ◽  
Kang-Yun Lee ◽  
Elen Jazrawi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document