Combination of Spectral and Spatial Information of Hyperspectral Imaging for the Prediction of the Moisture Content and Visualizing Distribution in Daqu

Author(s):  
Ting Sun ◽  
Xinjun Hu ◽  
Jianping Tian ◽  
Qiang Gu ◽  
Danping Huang ◽  
...  
2021 ◽  
Vol 13 (8) ◽  
pp. 1562
Author(s):  
Xiangyu Ge ◽  
Jianli Ding ◽  
Xiuliang Jin ◽  
Jingzhe Wang ◽  
Xiangyue Chen ◽  
...  

Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important monitoring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This technology develops precision farming and agricultural informatization. However, hyperspectral data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2) near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested: the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost (XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid regions. The results demonstrated that FOD technology could effectively mine information (with an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best estimates out of the methods tested (R2val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The model derived from the order of 0.4 within strategy IV worked relatively well among the different derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC estimation. This research provided a promising data mining approach for UAV-based hyperspectral imaging data.


2021 ◽  
Vol 180 ◽  
pp. 111597
Author(s):  
Guantao Xuan ◽  
Chong Gao ◽  
Yuanyuan Shao ◽  
Xiaoyun Wang ◽  
Yongxian Wang ◽  
...  

Author(s):  
Laura M. DALE ◽  
André THEWIS ◽  
Ioan ROTAR ◽  
Juan A. FERNANDEZ PIERNA ◽  
Christelle BOUDRY ◽  
...  

Nowadays in agriculture, new analytical tools based on spectroscopic technologies are developed. Near Infrared Spectroscopy (NIRS) is a well known technology in the agricultural sector allowing the acquisition of chemical information from the samples with a large number of advantages, such as: easy to use tool, fast and simultaneous analysis of several components, non-polluting, noninvasive and non destructive technology, and possibility of online or field implementation. Recently, NIRS system was combined with imaging technologies creating the Near Infrared Hyperspectral Imaging system (NIR-HSI). This technology provides simultaneously spectral and spatial information from an object. The main differences between NIR-HSI and NIRS is that many spectra can be recorded simultaneously from a large area of an object with the former while with NIRS only one spectrum was recorded for analysis on a small area. In this work, both technologies are presented with special focus on the main spectrum and images analysis methods. Several qualitative and quantitative applications of NIRS and NIR-HSI in agricultural products are listed. Developments of NIRS and NIR-HSI will enhance progress in the field of agriculture by providing high quality and safe agricultural products, better plant and grain selection techniques or compound feed industry’s productivity among others.


Author(s):  
Aoife Gowen ◽  
Jun-Li Xu ◽  
Ana Herrero-Langreo

Applications of hyperspectral imaging (HSI) to the quantitative and qualitative measurement of samples have grown widely in recent years, due mainly to the improved performance and lower cost of imaging spectroscopy instrumentation. Data sampling is a crucial yet often overlooked step in hyperspectral image analysis, which impacts the subsequent results and their interpretation. In the selection of pixel spectra for the calibration of classification models, the spatial information in HSI data can be exploited. In this paper, a variety of sampling strategies for selection of pixel spectra are presented, exemplified through five case studies. The strategies are compared in terms of the proportion of global variability captured, practicality and predictive model performance. The use of variographic analysis as a guide to the spatial segmentation prior to sampling leads to the selection of representative subsets while reducing the variation in model performance parameters over repeated random selection.


Sign in / Sign up

Export Citation Format

Share Document