Relationship between soil chemical properties and microbial metabolic patterns in intensive greenhouse tomato production systems

2019 ◽  
Vol 66 (10) ◽  
pp. 1334-1343
Author(s):  
Zhipeng Hao ◽  
Baodong Chen ◽  
Xiaolin Li
2015 ◽  
pp. 275-280 ◽  
Author(s):  
F. Baysal-Gurel ◽  
C.J. Kurowski ◽  
R. Li ◽  
K.-S. Ling ◽  
S.A. Miller

HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1141-1152 ◽  
Author(s):  
Isabelle Lemay ◽  
Jean Caron ◽  
Martine Dorais ◽  
Steeve Pepin

Ongoing research on organic growing media for greenhouse tomato production is driven by the constant changes in the quality, stability, and form of the organic byproducts used in the manufacturing of these media. This study was undertaken to determine appropriate irrigation set points for a sawdust–peat mix (SP) under development given that the performance of this substrate appeared to be strongly dependent on appropriate irrigation management. A greenhouse tomato experiment was conducted to compare different irrigation management approaches for a SP substrate in the spring and summer. Using preliminary measurements from an initial experiment (Expt. 1), different irrigation strategies for the SP substrate were compared in a second experiment (Expt. 2): 1) a variable irrigation regime using a timer control (with frequency adjusted as a function of irradiance); 2) tensiometer control at –1.5 kPa; and 3) two constant substrate water potential devices: –1.1 kPa and –0.9 kPa. An irrigation timer/controller using solar radiation input was used with a rockwool control (RC) substrate. Measurements of plant activity [photosynthesis rate and stomatal conductance (gS)], substrate physical and chemical properties, biomass, and yield were obtained. For all irrigation strategies, results indicated that 10% to 20% higher photosynthesis rates and gS values were obtained with the SP substrate compared with RC. Data indicated that moderate drying conditions (matric potential ranging from –2.2 kPa to –1.5 kPa in Expt. 1 and Expt. 2, respectively) relative to container capacity (–0.6 kPa) were beneficial for improving plant photosynthetic activity and allowed the highest yields for the SP substrate. Variable irrigation management showed higher levels of plant activity than constant watering and increased the oxygen concentration in the substrate by ≈2% in absolute value relative to the constant water potential device. Lower CO2 and N2O levels were also observed with the variable irrigation strategy. On the other hand, maximum nutrient solution savings were achieved with the constant matric potential devices (8% to 31% relative to the RC). This study showed high productivity potential for the SP substrate with suitable irrigation management. Replacing conventional growing media with organic waste-based products using an appropriate irrigation strategy may help to increase the sustainability of the greenhouse industry.


2019 ◽  
Vol 2 ◽  
pp. 3 ◽  
Author(s):  
Daisy Chepkoech Ngeno ◽  
Lucy Kananu Murungi ◽  
Davis Ireri Fundi ◽  
Vitalis Wekesa ◽  
Solveig Haukeland ◽  
...  

Background: Plant parasitic nematodes (PPNs) and bacterial wilt (Ralstonia solanacearum) are serious soil-borne pests in tomato (Solanum lycopersicon L) production in high tunnels. This study was undertaken to determine effects of soil chemical properties on their abundance. Method: Soil samples were collected from 32 high tunnels in the sub-counties: Gatundu North, Gatundu South, Juja, Thika, Ruiru and Kiambu, Kenya, from January to November 2016. Nematodes genera, R. solanacearum and soil chemical properties were evaluated from composite soil samples collected from the high tunnels. Results: The soil pH and N, P, K, Ca, Mg, Na and Cu varied across sub-counties. Twenty-four nematode genera including 14 PPNs, 5 bacterivores, 3 fungivores and 2 predators were recovered from soil samples. The genera Meloidogyne, Alaimus, Aporcelaimus and Mononchus were the most abundant PPNs, bacterivores, fungivores and predators, respectively, and differed across sub-counties. The abundance of Meloidogyne spp. and R. solanacearum was higher in Gatundu North than in the other sub-counties. There was a strong, positive correlation between Meloidogyne spp. (second stage juveniles counts) population and R. solanacearum (cfu∙mL-1) with soil N and P, and a weak negative correlation with soil pH, EC, Zn and Cu. Fungal feeders exhibited a strong negative correlation with soil pH and Ca; predators, bacterial feeders, and PPNs had similar correlations with N, P and Ca, respectively. Conclusion: Soil chemical properties affect abundance of beneficial and phytoparasitic nematodes and R. solanacearum, which varies with location.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1650-1651 ◽  
Author(s):  
Logan S. Logendra ◽  
Jonathan G. Mun ◽  
Thomas J. Gianfagna ◽  
Harry W. Janes

Ethephon (2-chloroethylphosphonic acid) was applied to single cluster greenhouse tomato crops (1000 ppm) at the green mature stage of fruit development or when 35% of the plants had fruits at the breaker stage. Fruits were harvested at the pink stage. Untreated fruit were harvested from 95 to 116 days after sowing whereas fruit from the green mature ethephon treatment were harvested from 92 to 102 days, three days earlier and with a reduction in the harvest window from 22 to 11 days. Fruit treated with ethephon at 35% breaker were harvested at the same time as untreated fruit, but harvest was completed after only 12 days. Fruit yield from the green mature ethephon treatment was reduced by about 30%, but there was no significant difference in fruit yield as a result of ethephon treatment at 35% breaker. Fruit color, firmness and soluble solids were evaluated one and six days after harvest. Fruit firmness and soluble solids were unaffected by treatment; however, fruit from the ethephon treatments were significantly redder in color. In a second experiment, ethephon was applied at 500 or 1000 ppm when 100% of the plants had fruit at the breaker stage. Fruit were harvested over a 7-day time interval compared to untreated fruit that were harvested over 14 days, and there was a small but significant increase in fruit yield for the 1000 ppm treatment. Both ethephon treatments also increased fruit soluble solids. For limited cluster tomato production systems, ethephon is effective in reducing the harvest window without loss in postharvest fruit quality.


2011 ◽  
Vol 3 (4) ◽  
pp. 58-65 ◽  
Author(s):  
Parviz REZVANI MOGHADDAM ◽  
Hassan FEIZI ◽  
Farzad MONDANI

Efficient use of energy helps to achieve improved production and productivity, and contributes to economy, profitability and competitiveness of agricultural sustainability. The aim of the present study was to compare open field and greenhouse tomato production systems in terms of energy efficiency, energy intensiveness, energy productivity, benefit to cost ratio and amount of renewable and non-renewable energy uses. Data were collected from 128 and 16 open field and greenhouse tomato growers, respectively, by using a face-to-face questionnaire in 2010. The results showed that the total energy requirement under open field and greenhouse systems were 47647.12 and 2102678.73 MJ ha-1, respectively. The share of direct, indirect, renewable and non-renewable energies from total energy input which average in open field and greenhouse production systems were 74%, 26%, 17% and 83%, respectively. Energy use efficiency was achieved 1.42 and 0.18 in open field and greenhouse, respectively. The benefit to cost ratios of 2.33 in open field and 3.06 in greenhouse was recorded. Based on the present results, open field tomato production system had higher energy efficiency in comparison with greenhouse tomato production system while greenhouse system had a higher economical benefit.


Sign in / Sign up

Export Citation Format

Share Document