Temporal and spatial distribution of phytoplankton as detected by in vivo et in situ fluorometry

1981 ◽  
Vol 21 (2) ◽  
pp. 756-762
Author(s):  
E. A. Nusch ◽  
P. Koppe
Author(s):  
Parya Broomandi ◽  
Bahram Dabir ◽  
Babak Bonakdarpour ◽  
Yousef Rashidi

Background: Long-range transport of dust aerosol has intense impacts on theatmospheric environment over wide areas. Methods: The annual and seasonal changes inmeteorological parameters associated with the occurrence of dust storms were studied. Thefeatures of an intense dust storm and its transport characteristics were studied during June 7thto June 9th 2010 in Ahvaz city. Temporal and spatial distribution of Middle Eastern dust stormevent was analyzed by models of HYSPLIT and WRF/Chem, and in- situ observations. Results:A disagreement between the occurrences of dust storms, temperature, relative humidity andrainfall, show the major source of dust storms over Ahvaz city are neighboring countries. UsingHYSPLIT results, the dust particles are mainly transported from north western region of Iraqand eastern Syria to downward areas including Ahvaz city. The arrived Dust aerosols mixedwith local anthropogenic emissions, led to the highest PM10 concentration of 4200 ppm. Themodel results were found to well reproduce temporal and spatial distribution of mineral dustconcentrations according to in-situ measurements. Conclusion: The performance of WRF/Chemwas acceptable for simulation of temporal and spatial distributions of dust storm events.Therefore, it can be taken as a reference in daily air quality forecasting.


2013 ◽  
Vol 304 (3) ◽  
pp. E254-E266 ◽  
Author(s):  
Shanthie Thamotharan ◽  
David Stout ◽  
Bo-Chul Shin ◽  
Sherin U. Devaskar

To investigate in vivo transcription of the facilitative glucose transporter isoform-GLUT3 gene, we created GLUT3-firefly luciferase transgenic mouse lines that demonstrate tissue-specific [adult: brain > testis ≥ skeletal muscle > placenta; postnatal (PN): skeletal muscle > brain = skin], temporal, and spatial distribution of the reporter gene/enzyme activity that is unique from endogenous GLUT3 mRNA/protein. In this mouse model, luciferase expression/activity serving as a readout of in vivo transcription peaked at 12 days gestation along with proliferating cell nuclear antigen (cell replication) in placenta and embryonic brain preceding peak GLUT3 protein expression at 18–19 days gestation. In contrast, a postnatal increase in brain luciferase mRNA peaked with endogenous GLUT3 mRNA, but after that of NeuroD6 protein (neurogenesis) at PN7. Luciferase activity paralleled GLUT3 protein expression with Na+-K+-ATPase (membrane expansion) and synaptophysin (synaptogenesis) proteins, peaking at PN14 and lasting until 60 days in the adult. Thus GLUT3 transcription in placenta and embryonic brain coincided with cell proliferation and in postnatal brain with synaptogenesis. Longitudinal noninvasive bioluminescence (BLI) monitoring of in vivo brain GLUT3 transcription reflected cross-sectional ex vivo brain luciferase activity only between PN7 and PN21. Hypoxia/reoxygenation at PN7 revealed transcriptional increase in brain GLUT3 expression reflected by in vivo BLI and ex vivo luciferase activity. These observations collectively support a temporal contribution by transcription toward ensuring adequate tissue-specific, developmental (placenta and embryonic brain), and postnatal hypoxic brain GLUT3 expression.


Sign in / Sign up

Export Citation Format

Share Document